Polyciliation of GnRH Neurons in Vivo and in Vitro

Date
2021
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Oxford University Press
Abstract

Puberty and reproduction are initiated and controlled through the hypothalamic-pituitary-gonadal (HPG) axis. A critical surge of luteinizing hormone (LH) and follicle stimulating hormone (FSH) are released from the anterior pituitary upon release of gonadotrophins from gonadotrophin releasing hormone (GnRH) neurons. Thus, GnRH neurons are key regulators of the HPG axis. GnRH neurons become active when kisspeptin (Kiss1) neuropeptides are released from neurons in the arcuate nucleus. Kiss1 binds to the Kiss1 receptor (Kiss1R), a G-protein coupled receptor (GPCR) which localizes to the primary cilia of GnRH neurons. Loss-of-function mutations of Kiss1R cause hypogonadism in mouse and human models while gain-of-function mutations are associated with precocious puberty. Interestingly, the subset of GnRH neurons that express Kiss1R are observed to be polyciliated, possessing more than one primary cilia, an uncommon property as most neurons only possess a single, primary cilium. The mechanism and conditions leading to GnRH neuron polyciliation are unknown. It is also unclear if multiple cilia impact Kiss1R or other GPCR signaling in these neurons. Here, we utilize cultured mouse primary hypothalamic neurons to begin addressing some of these questions. We have confirmed with qPCR that the ligands GnRH and Kiss1, as well as Kiss1R, are all expressed in these cultures. Surprisingly, when treated with Kiss1 and GnRH ligands we observed a small subset of polyciliated neurons compared to vehicle treated neurons. These observations mirror what is seen during sexual maturation in vivo and suggest that our model system may help elucidate fundamental questions about how ciliary localization of Kiss1r and other GPCRs participate in initiation of puberty and regulation of reproduction. Future studies will focus on the mechanisms of polyciliation and the conditions needed to induce the formation of new cilia in GnRH neurons. Investigating neuronal polyciliation could provide insights into new signaling paradigm in hypogonadism and HPG signaling.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Kathryn M Brewer, Ruchi Bansal, Staci E Engle, Patrick J Antonellis, Theodore R Cummins, Nicolas F Berbari, Polyciliation of GnRH Neurons in Vivo and in Vitro, Journal of the Endocrine Society, Volume 5, Issue Supplement_1, April-May 2021, Pages A548–A549, https://doi.org/10.1210/jendso/bvab048.1117
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Journal of the Endocrine Society
Source
Publisher
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}