Department of Biology Works

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 10 of 471
  • Item
    Pif1 helicase and Polδ promote recombination-coupled DNA synthesis via bubble migration
    (Springer Nature, 2013) Wilson, Marenda A.; Kwon, YoungHo; Xu, Yuanyuan; Chung, Woo-Hyun; Chi, Peter; Niu, Hengyao; Mayle, Ryan; Chen, Xuefeng; Malkova, Anna; Sung, Patrick; Ira, Grzegorz; Biology, School of Science
    During DNA repair by homologous recombination (HR), DNA synthesis copies information from a template DNA molecule. Multiple DNA polymerases have been implicated in repair-specific DNA synthesis, but it has remained unclear whether a DNA helicase is involved in this reaction. A good candidate DNA helicase is Pif1, an evolutionarily conserved helicase in Saccharomyces cerevisiae important for break-induced replication (BIR) as well as HR-dependent telomere maintenance in the absence of telomerase found in 10-15% of all cancers. Pif1 has a role in DNA synthesis across hard-to-replicate sites and in lagging-strand synthesis with polymerase δ (Polδ). Here we provide evidence that Pif1 stimulates DNA synthesis during BIR and crossover recombination. The initial steps of BIR occur normally in Pif1-deficient cells, but Polδ recruitment and DNA synthesis are decreased, resulting in premature resolution of DNA intermediates into half-crossovers. Purified Pif1 protein strongly stimulates Polδ-mediated DNA synthesis from a D-loop made by the Rad51 recombinase. Notably, Pif1 liberates the newly synthesized strand to prevent the accumulation of topological constraint and to facilitate extensive DNA synthesis via the establishment of a migrating D-loop structure. Our results uncover a novel function of Pif1 and provide insights into the mechanism of HR.
  • Item
    Integrated Analysis of Global mRNA and Protein Expression Data in HEK293 Cells Overexpressing PRL-1
    (Public Library of Science, 2013-09-03) Dumaual, Carmen M.; Steere, Boyd A.; Walls, Chad D.; Wang, Mu; Zhang, Zhong-Yin; Randall, Stephen K.; Biology, School of Science
    Background: The protein tyrosine phosphatase PRL-1 represents a putative oncogene with wide-ranging cellular effects. Overexpression of PRL-1 can promote cell proliferation, survival, migration, invasion, and metastasis, but the underlying mechanisms by which it influences these processes remain poorly understood. Methodology: To increase our comprehension of PRL-1 mediated signaling events, we employed transcriptional profiling (DNA microarray) and proteomics (mass spectrometry) to perform a thorough characterization of the global molecular changes in gene expression that occur in response to stable PRL-1 overexpression in a relevant model system (HEK293). Principal findings: Overexpression of PRL-1 led to several significant changes in the mRNA and protein expression profiles of HEK293 cells. The differentially expressed gene set was highly enriched in genes involved in cytoskeletal remodeling, integrin-mediated cell-matrix adhesion, and RNA recognition and splicing. In particular, members of the Rho signaling pathway and molecules that converge on this pathway were heavily influenced by PRL-1 overexpression, supporting observations from previous studies that link PRL-1 to the Rho GTPase signaling network. In addition, several genes not previously associated with PRL-1 were found to be significantly altered by its expression. Most notable among these were Filamin A, RhoGDIα, SPARC, hnRNPH2, and PRDX2. Conclusions and significance: This systems-level approach sheds new light on the molecular networks underlying PRL-1 action and presents several novel directions for future, hypothesis-based studies.
  • Item
    JAK-STAT and bone metabolism
    (Taylor & Francis, 2013) Li, Jiliang; Biology, School of Science
    Emerging evidences suggest Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway plays an important role in bone development and metabolism. Effects of JAK-STAT pathway on skeletal development are summarized based on skeletal phenotype of individual JAK and STAT gene knockout mouse. Furthermore, STAT3 has more profound effects on bone homeostasis compared with the other STATs. STAT3 mutation causes a disease called Job syndrome, most patients with which have associated craniofacial and skeletal features. Selective inactivation of STAT3 in osteoblasts decreases bone formation and skeletal responsiveness to mechanical loading. Future research includes investigating JAK-STAT signaling in osteoclasts and osteocytes.
  • Item
    Ethanol exposure disrupts extraembryonic microtubule cytoskeleton and embryonic blastomere cell adhesion, producing epiboly and gastrulation defects
    (The Company of Biologists, 2013-08-14) Sarmah, Swapnalee; Muralidharan, Pooja; Curtis, Courtney L.; McClintick, Jeanette N.; Buente, Bryce B.; Holdgrafer, David J.; Ogbeifun, Osato; Olorungbounmi, Opeyemi C.; Patino, Liliana; Lucas, Ryan; Gilbert, Sonya; Groninger, Evan S.; Arciero, Julia; Edenberg, Howard J.; Marrs, James A.; Biology, School of Science
    Fetal alcohol spectrum disorder (FASD) occurs when pregnant mothers consume alcohol, causing embryonic ethanol exposure and characteristic birth defects that include craniofacial, neural and cardiac defects. Gastrulation is a particularly sensitive developmental stage for teratogen exposure, and zebrafish is an outstanding model to study gastrulation and FASD. Epiboly (spreading blastomere cells over the yolk cell), prechordal plate migration and convergence/extension cell movements are sensitive to early ethanol exposure. Here, experiments are presented that characterize mechanisms of ethanol toxicity on epiboly and gastrulation. Epiboly mechanisms include blastomere radial intercalation cell movements and yolk cell microtubule cytoskeleton pulling the embryo to the vegetal pole. Both of these processes were disrupted by ethanol exposure. Ethanol effects on cell migration also indicated that cell adhesion was affected, which was confirmed by cell aggregation assays. E-cadherin cell adhesion molecule expression was not affected by ethanol exposure, but E-cadherin distribution, which controls epiboly and gastrulation, was changed. E-cadherin was redistributed into cytoplasmic aggregates in blastomeres and dramatically redistributed in the extraembryonic yolk cell. Gene expression microarray analysis was used to identify potential causative factors for early development defects, and expression of the cell adhesion molecule protocadherin-18a (pcdh18a), which controls epiboly, was significantly reduced in ethanol exposed embryos. Injecting pcdh18a synthetic mRNA in ethanol treated embryos partially rescued epiboly cell movements, including enveloping layer cell shape changes. Together, data show that epiboly and gastrulation defects induced by ethanol are multifactorial, and include yolk cell (extraembryonic tissue) microtubule cytoskeleton disruption and blastomere adhesion defects, in part caused by reduced pcdh18a expression.
  • Item
    Relative expression of proprotein convertases in rat ovaries during pregnancy
    (Springer Nature, 2013-12-11) Kwok, Simon C. M.; Chakraborty, Damayanti; Soares, Michael J.; Dai, Guoli; Biology, School of Science
    Background: Proprotein convertases are a family of serine proteinases that are related to bacterial subtilisin and yeast kexin. They are involved in posttranslational processing of the precursors of a vast number of cellular proteins. With the exception of PC1/3, the relative expression levels of the proprotein convertases in the ovary during pregnancy have not been reported. The purpose of this study is to determine by real-time PCR the relative expression levels of all nine proprotein convertases in rat ovaries during pregnancy and at 3 days postpartum. Methods: RNA was extracted from ovaries at Day 0, 4, 9, 11, 13, 15, 18, and 20 of pregnancy as well as 3 days postpartum. Relative expression levels of Pcsk1, Pcsk2, Furin, Pcsk4, Pcsk5, Pcsk6, Pcsk7, Mbtps1 and Pcsk9 were determined with real-time PCR. Results were reported as fold-change over the level at Day 0 of pregnancy. Results: Results showed that Pcsk1 and Pcsk6 were upregulated as gestation advanced, in parallel with an observed increase in relaxin transcript. Pcsk2 showed downregulation as gestation advanced, while Pcsk5 showed relatively higher levels in early pregnancy and postpartum, but lower level in mid-pregnancy. On the other hand, Furin, Pcsk4, Pcsk7, Mbtps1 and Pcsk9 showed little change of expression throughout gestation. Conclusion: PC1/3 (PCSK1) and PACE4 (PCSK6) may play an important role in proprotein processing in the ovary during late pregnancy.
  • Item
    Soypeptide lunasin in cytokine immunotherapy for lymphoma
    (Springer, 2014) Chang, Hua‑Chen; Lewis, David; Tung, Chun‑Yu; Han, Ling; Henriquez, Sarah M. P.; Voiles, Larry; Lupov, Ivan P.; Pelloso, David; Sinn, Anthony L.; Pollok, Karen E.; de Lumen, Ben O.; Li, Fang; Blum, Janice S.; Srivastava, Shivani; Robertson, Michael J.; Biology, School of Science
    Immunostimulatory cytokines can enhance anti-tumor immunity and are part of the therapeutic armamentarium for cancer treatment. We have previously reported that post-transplant lymphoma patients have an acquired deficiency of signal transducer and activator of transcription 4, which results in defective IFNγ production during clinical immunotherapy. With the goal of further improving cytokine-based immunotherapy, we examined the effects of a soybean peptide called lunasin that synergistically works with cytokines on natural killer (NK) cells. Peripheral blood mononuclear cells of healthy donors and post-transplant lymphoma patients were stimulated with or without lunasin in the presence of IL-12 or IL-2. NK activation was evaluated, and its tumoricidal activity was assessed using in vitro and in vivo tumor models. Chromatin immunoprecipitation assay was performed to evaluate the histone modification of gene loci that are regulated by lunasin and cytokine. Adding lunasin to IL-12- or IL-2-stimulated NK cells demonstrated synergistic effects in the induction of IFNG and GZMB involved in cytotoxicity. The combination of lunasin and cytokines (IL-12 plus IL-2) was capable of restoring IFNγ production by NK cells from post-transplant lymphoma patients. In addition, NK cells stimulated with lunasin plus cytokines displayed higher tumoricidal activity than those stimulated with cytokines alone using in vitro and in vivo tumor models. The underlying mechanism responsible for the effects of lunasin on NK cells is likely due to epigenetic modulation on target gene loci. Lunasin represents a different class of immune modulating agent that may augment the therapeutic responses mediated by cytokine-based immunotherapy.
  • Item
    Enhanced insights into the genetic architecture of 3D cranial vault shape using pleiotropy-informed GWAS
    (Springer Nature, 2025-03-15) Goovaerts, Seppe; Naqvi, Sahin; Hoskens, Hanne; Herrick, Noah; Yuan, Meng; Shriver, Mark D.; Shaffer, John R.; Walsh, Susan; Weinberg, Seth M.; Wysocka, Joanna; Claes, Peter; Biology, School of Science
    Large-scale GWAS studies have uncovered hundreds of genomic loci linked to facial and brain shape variation, but only tens associated with cranial vault shape, a largely overlooked aspect of the craniofacial complex. Surrounding the neocortex, the cranial vault plays a central role during craniofacial development and understanding its genetics are pivotal for understanding craniofacial conditions. Experimental biology and prior genetic studies have generated a wealth of knowledge that presents opportunities to aid further genetic discovery efforts. Here, we use the conditional FDR method to leverage GWAS data of facial shape, brain shape, and bone mineral density to enhance SNP discovery for cranial vault shape. This approach identified 120 independent genomic loci at 1% FDR, nearly tripling the number discovered through unconditioned analysis and implicating crucial craniofacial transcription factors and signaling pathways. These results significantly advance our genetic understanding of cranial vault shape and craniofacial development more broadly.
  • Item
    Optimized phenotyping of complex morphological traits: enhancing discovery of common and rare genetic variants
    (Oxford University Press, 2025) Yuan, Meng; Goovaerts, Seppe; Lee, Myoung K.; Devine, Jay; Richmond, Stephen; Walsh, Susan; Shriver, Mark D.; Shaffer, John R.; Marazita, Mary L.; Peeters, Hilde; Weinberg, Seth M.; Claes, Peter; Biology, School of Science
    Genotype-phenotype (G-P) analyses for complex morphological traits typically utilize simple, predetermined anatomical measures or features derived via unsupervised dimension reduction techniques (e.g. principal component analysis (PCA) or eigen-shapes). Despite the popularity of these approaches, they do not necessarily reveal axes of phenotypic variation that are genetically relevant. Therefore, we introduce a framework to optimize phenotyping for G-P analyses, such as genome-wide association studies (GWAS) of common variants or rare variant association studies (RVAS) of rare variants. Our strategy is two-fold: (i) we construct a multidimensional feature space spanning a wide range of phenotypic variation, and (ii) within this feature space, we use an optimization algorithm to search for directions or feature combinations that are genetically enriched. To test our approach, we examine human facial shape in the context of GWAS and RVAS. In GWAS, we optimize for phenotypes exhibiting high heritability, estimated from either family data or genomic relatedness measured in unrelated individuals. In RVAS, we optimize for the skewness of phenotype distributions, aiming to detect commingled distributions that suggest single or few genomic loci with major effects. We compare our approach with eigen-shapes as baseline in GWAS involving 8246 individuals of European ancestry and in gene-based tests of rare variants with a subset of 1906 individuals. After applying linkage disequilibrium score regression to our GWAS results, heritability-enriched phenotypes yielded the highest SNP heritability, followed by eigen-shapes, while commingling-based traits displayed the lowest SNP heritability. Heritability-enriched phenotypes also exhibited higher discovery rates, identifying the same number of independent genomic loci as eigen-shapes with a smaller effective number of traits. For RVAS, commingling-based traits resulted in more genes passing the exome-wide significance threshold than eigen-shapes, while heritability-enriched phenotypes lead to only a few associations. Overall, our results demonstrate that optimized phenotyping allows for the extraction of genetically relevant traits that can specifically enhance discovery efforts of common and rare variants, as evidenced by their increased power in facial GWAS and RVAS.
  • Item
    A Myosin Nanomotor Essential for Stereocilia Maintenance Exp 1 ands the Etiology of 2 Hereditary Hearing Loss DFNB3
    (bioRxiv, 2025-02-21) Behnammanesh, Ghazaleh; Dragich, Abigail K.; Liao, Xiayi; Hadi, Shadan; Kim, Mi-Jung; Perrin, Benjamin; Someya, Shinichi; Frolenkov, Gregory I.; Bird, Jonathan E.; Biology, School of Science
    Cochlear hair cells transduce sound using stereocilia, and disruption to these delicate mechanosensors is a significant cause of hearing loss. Stereocilia architecture is dependent upon the nanomotor myosin 15. A short isoform (MYO15A-2) drives stereocilia development by delivering an elongation-promoting complex (EC) to stereocilia tips, and an alternatively spliced long isoform (MYO15A-1) tunes postnatal size in shorter stereocilia, which possess mechanosensitive ion channels. Disruption of these functions causes two distinct stereocilia pathologies, which underly human autosomal recessive non-syndromic hearing loss DFNB3. Here, we characterize a new isoform, MYO15A-3, that increases expression in postnatal hair cells as the developmental MYO15A-2 isoform wanes reciprocally. We show the critical EC complex is initially delivered by MYO15A-2, followed by a postnatal handover to MYO15A-3, which continues to deliver the EC. In a Myo15a-3 mutant mouse, stereocilia develop normally with correct EC targeting, but lack the EC postnatally and do not maintain their adult architecture, leading to progressive hearing loss. We conclude MYO15A-3 delivers the EC in postnatal hair cells and that the EC and MYO15A-3 are both required to maintain stereocilia integrity. Our results add to the spectrum of stereocilia pathology underlying DFNB3 hearing loss and reveal new molecular mechanisms necessary for resilient hearing during adult life.
  • Item
    Development of the Pancreatic Ducts and Their Contribution to Organogenesis
    (Springer, 2024) Dale, Dorian J.; Rutan, Caleb D.; Mastracci, Teresa L.; Biology, School of Science
    The pancreas is a dual-function organ, with exocrine cells that aid in digestion and endocrine cells that regulate glucose homeostasis. These cell types share common progenitors and arise from the embryonic ducts. Early signaling events in the embryonic ducts shape the neonatal, adolescent, and adult exocrine and endocrine pancreas. This chapter discusses recent advances in the tools used to study the ducts and our current understanding of how ductal development contributes to pancreatic organogenesis.