- Browse by Title
Department of Biology Works
Permanent URI for this collection
Browse
Browsing Department of Biology Works by Title
Now showing 1 - 10 of 442
Results Per Page
Sort Options
Item 3D Assessment of Nasopharyngeal and Craniofacial Phenotypes in Ts65Dn Down Syndrome Mice Treated with a Dyrk1a Inhibitor(2014-04-11) Starbuck, John M.; Harrington, Emily; Kula, Katherine S.; Ghoneima, Ahmed A.; Roper, Randall J.Background: Down syndrome (DS) originates from having three copies of chromosome 21 (i.e. Trisomy 21). DS is associated with many detrimental phenotypes including intellectual disabilities, heart defects, abnormal craniofacial development, and obstructive sleep apnea, which develops from restricted nasopharyngeal airways and an underdeveloped mandible. Ts65Dn mice are trisomic for about half of the orthologs on human chromosome 21 and display many phenotypes associated with DS including craniofacial abnormalities. Dyrk1a is found in three copies in Ts65Dn mice and individuals with DS, and thought to be a root cause of the craniofacial phenotypes. Epigallocatechin 3-gallate (EGCG) is a green tea polyphenol and inhibitor of Dyrk1a activity. Purpose: We hypothesize that decreased Dyrk1a activity in Ts65Dn mice will ameliorate craniofacial dysmorphology. Methods: To test our hypothesis we compared Ts65Dn mice with two or three copies of Dyrk1a and compared Ts65Dn mice with and without prenatal EGCG treatment. EGCG treated mothers were fed 200mg/kg EGCG on gestational day 7. Six week old mice were sacrificed and their heads imaged using micro-computed tomography (μCT). From μCT images, we measured nasopharyngeal airway volume and anatomical landmarks (n = 54) from the facial skeleton, cranial vault, cranial base, and mandible. Mean nasopharyngeal airway volumes were graphically compared, and a landmark-based multivariate geometric morphometric approach known as Euclidean Distance Matrix Analysis (EDMA) was carried out to assess local differences in craniofacial morphology between trisomic mouse samples. Results: Our preliminary results indicate that EGCG treatment and reduced Dyrk1a copy number increases mean nasopharyngeal airway volume in Ts65Dn mice. Craniofacial morphometric differences were found among all samples. EGCG treatment increased portions of the mandible and decreased portions of the cranial vault and cranial base. Conclusion: Preliminary analyses suggest that both EGCG treatment and reduced Dyrk1a copy number affect craniofacial morphology.Item 3D Facial Matching by Spiral Convolutional Metric Learning and a Biometric Fusion-Net of Demographic Properties(IEEE, 2021) Mahdi, Soha Sadat; Nauwelaers, Nele; Joris, Philip; Bouritsas, Giorgos; Gong, Shunwang; Bokhnyak, Sergiy; Walsh, Susan; Shriver, Mark D.; Bronstein, Michael; Claes, Peter; Biology, School of ScienceFace recognition is a widely accepted biometric verification tool, as the face contains a lot of information about the identity of a person. In this study, a 2-step neural-based pipeline is presented for matching 3D facial shape to multiple DNA-related properties (sex, age, BMI and genomic background). The first step consists of a triplet loss-based metric learner that compresses facial shape into a lower dimensional embedding while preserving information about the property of interest. Most studies in the field of metric learning have only focused on 2D Euclidean data. In this work, geometric deep learning is employed to learn directly from 3D facial meshes. To this end, spiral convolutions are used along with a novel mesh-sampling scheme that retains uniformly sampled 3D points at different levels of resolution. The second step is a multi-biometric fusion by a fully connected neural network. The network takes an ensemble of embeddings and property labels as input and returns genuine and imposter scores. Since embeddings are accepted as an input, there is no need to train classifiers for the different properties and available data can be used more efficiently. Results obtained by a to-fold cross-validation for biometric verification show that combining multiple properties leads to stronger biometric systems. Furthermore, the proposed neural-based pipeline outperforms a linear baseline, which consists of principal component analysis, followed by classification with linear support vector machines and a Naïve Bayes-based score-fuser.Item 3D facial phenotyping by biometric sibling matching used in contemporary genomic methodologies(Public Library of Science, 2021-05-13) Hoskens, Hanne; Liu, Dongjing; Naqvi, Sahin; Lee, Myoung Keun; Eller, Ryan J.; Indencleef, Karlijne; White, Julie D.; Li, Jiarui; Larmuseau, Maarten H. D.; Hens, Greet; Wysocka, Joanna; Walsh, Susan; Richmond, Stephen; Shriver, Mark D.; Shaffer, John R.; Peeters, Hilde; Weinberg, Seth M.; Claes, Peter; Biology, School of ScienceThe analysis of contemporary genomic data typically operates on one-dimensional phenotypic measurements (e.g. standing height). Here we report on a data-driven, family-informed strategy to facial phenotyping that searches for biologically relevant traits and reduces multivariate 3D facial shape variability into amendable univariate measurements, while preserving its structurally complex nature. We performed a biometric identification of siblings in a sample of 424 children, defining 1,048 sib-shared facial traits. Subsequent quantification and analyses in an independent European cohort (n = 8,246) demonstrated significant heritability for a subset of traits (0.17-0.53) and highlighted 218 genome-wide significant loci (38 also study-wide) associated with facial variation shared by siblings. These loci showed preferential enrichment for active chromatin marks in cranial neural crest cells and embryonic craniofacial tissues and several regions harbor putative craniofacial genes, thereby enhancing our knowledge on the genetic architecture of normal-range facial variation.Item 60kDa Lysophospholipase, a New Sgk1 Molecular Partner Involved in the Regulation of ENaC(2010) Menniti, Miranda; Iuliano, Rodolfo; Föller, Michael; Sopjani, Mentor; Alesutan, Ioana; Mariggiò, Stefania; Nofziger, Charity; Perri, Angela M.; Amato, Rosario; Blazer-Yost, Bonnie; Corda, Daniela; Lang, Florian; Perrotti, NicolaThe serum- and glucocorticoid-regulated kinase (Sgk1) is essential for hormonal regulation of ENaC-mediated sodium transport and is involved in the transduction of growth-factor-dependent cell survival and proliferation. The identification of molecular partners for Sgk1 is crucial for the understanding of its mechanisms of action. We performed a yeast two-hybrid screening based on a human kidney cDNA library to identify molecular partners of Sgk1. As a result the screening revealed a specific interaction between Sgk1 and a 60 kDa Lysophospholipase (LysoLP). LysoLP is a poorly characterized enzyme that, based on sequence analysis, might possess lysophospholipase and asparaginase activities. We demonstrate that LysoLP has indeed a lysophospholipase activity and affects metabolic functions related to cell proliferation and regulation of membrane channels. Moreover we demonstrate in the Xenopus oocyte expression system that LysoLP downregulates basal and Sgk1-dependent ENaC activity. In conclusion LysoLP may represent a new player in the regulation of ENaC and Sgk1-dependent signaling.Item A Bbs5 mouse model reveals pituitary cilia contributions to developmental abnormalities(Cold Spring Harbor Laboratory, 2020-08-19) Bentley, Melissa R.; Engle, Staci E.; Haycraft, Courtney J.; Andersen, Reagan S.; Croyle, Mandy J.; Clearman, Kelsey R.; Rains, Addison B.; Berbari, Nicolas F.; Yoder, Bradley K.; Biology, School of SciencePrimary cilia are critical sensory and signaling compartments present on most mammalian cell types. These specialized structures require a unique signaling protein composition relative to the rest of the cell to carry out their functions. Defects in ciliary structure and signaling result in a broad group of disorders collectively known as ciliopathies. One ciliopathy, Bardet-Biedl Syndrome (BBS; OMIM 209900), presents with diverse clinical features, many of which are attributed to defects in ciliary signaling during both embryonic development and postnatal life. For example, patients exhibit obesity, polydactyly, hypogonadism, developmental delay, and skeletal abnormalities along with sensory and cognitive deficits, but for many of these phenotypes it is uncertain which are developmental in origin. A subset of BBS proteins assembles into the BBSome complex, which is responsible for mediating transport of membrane proteins into and out of the cilium, establishing it as a sensory and signaling hub. Here we describe two new mouse models for BBS resulting from a congenital null and conditional allele of Bbs5. Bbs5 null mice develop a complex phenotype including craniofacial defects, skeletal shortening, ventriculomegaly, infertility, and pituitary anomalies. Utilizing the conditional allele, we show that the male fertility defects, ventriculomegaly, and pituitary abnormalities are only found when Bbs5 is mutated prior to P7 indicating a developmental origin. In contrast, mutation of Bbs5 results in obesity independent of the age of Bbs5 loss. Compared to other animal models of BBS, Bbs5 mutant mice exhibit pathologies that suggest a specialized role for Bbs5 in ciliary function.Item A long-read draft assembly of the Chinese mantis (Mantodea: Mantidae: Tenodera sinensis) genome reveals patterns of ion channel gain and loss across Arthropoda(G3, 2024) Goldberg, Jay; Godfrey, R. Keating; Barrett, MeghanPraying mantids (Mantodea: Mantidae) are iconic insects that have captivated biologists for decades, especially the species with cannibalistic copulatory behavior. This behavior has been cited as evidence that insects lack nociceptive capacities and cannot feel pain; however, this behaviorally driven hypothesis has never been rigorously tested at the genetic or functional level. To enable future studies of nociceptive capabilities in mantids, we sequenced and assembled a draft genome of the Chinese praying mantis (Tenodera sinensis) and identified multiple classes of nociceptive ion channels by comparison to orthologous gene families in Arthropoda. Our assembly—produced using PacBio HiFi reads—is fragmented (total size = 3.03 Gb; N50 = 1.8 Mb; 4,966 contigs), but is highly complete with respect to gene content (BUSCO complete = 98.7% [odb10_insecta]). The size of our assembly is substantially larger than that of most other insects, but is consistent with the size of other mantid genomes. We found that most families of nociceptive ion channels are present in the T. sinensis genome; that they are most closely related to those found in the damp-wood termite (Zootermopsis nevadensis); and that some families have expanded in T. sinensis while others have contracted relative to nearby lineages. Our findings suggest that mantids are likely to possess nociceptive capabilities and provide a foundation for future experimentation regarding ion channel functions and their consequences for insect behavior.Item A long-read draft assembly of the Chinese mantis (Mantodea: Mantidae: Tenodera sinensis) genome reveals patterns of ion channel gain and loss across Arthropoda(Oxford University Press, 2024) Goldberg, Jay K.; Godfrey, R. Keating; Barrett, Meghan; Biology, School of SciencePraying mantids (Mantodea: Mantidae) are iconic insects that have captivated biologists for decades, especially the species with cannibalistic copulatory behavior. This behavior has been cited as evidence that insects lack nociceptive capacities and cannot feel pain; however, this behaviorally driven hypothesis has never been rigorously tested at the genetic or functional level. To enable future studies of nociceptive capabilities in mantids, we sequenced and assembled a draft genome of the Chinese praying mantis (Tenodera sinensis) and identified multiple classes of nociceptive ion channels by comparison to orthologous gene families in Arthropoda. Our assembly—produced using PacBio HiFi reads—is fragmented (total size = 3.03 Gb; N50 = 1.8 Mb; 4,966 contigs), but is highly complete with respect to gene content (BUSCO complete = 98.7% [odb10_insecta]). The size of our assembly is substantially larger than that of most other insects, but is consistent with the size of other mantid genomes. We found that most families of nociceptive ion channels are present in the T. sinensis genome; that they are most closely related to those found in the damp-wood termite (Zootermopsis nevadensis); and that some families have expanded in T. sinensis while others have contracted relative to nearby lineages. Our findings suggest that mantids are likely to possess nociceptive capabilities and provide a foundation for future experimentation regarding ion channel functions and their consequences for insect behavior.Item A new Down syndrome rat model races forward(Elsevier, 2022) Roper, Randall J.; Goodlett, Charles R.; Biology, School of ScienceAnimal models of Down syndrome (DS) provide an essential resource for understanding genetic, cellular, and molecular contributions to traits associated with trisomy 21 (Ts21). Recent genetic enhancements in the development of DS models, including the new TcHSA21rat model (Kazuki et al.), have potential to transform our understanding of and potential therapies for Ts21.Item A transgenic Alx4-CreER mouse to analyze anterior limb and nephric duct development(Wiley, 2022) Rockwell, Devan M.; O’Connor, Amber K.; Bentley-Ford, Melissa R.; Haycraft, Courtney J.; Croyle, Mandy J.; Brewer, Kathryn M.; Berbari, Nicolas F.; Kesterson, Robert A.; Yoder, Bradley K.; Biology, School of ScienceBackground: Genetic tools to study gene function and the fate of cells in the anterior limb bud are very limited. Results: We describe a transgenic mouse line expressing CreERT2 from the Aristaless-like 4 (Alx4) promoter that induces recombination in the anterior limb. Cre induction at embryonic day 8.5 revealed that Alx4-CreERT2 labeled cells using the mTmG Cre reporter contributed to anterior digits I to III as well as the radius of the forelimb. Cre activity is expanded further along the AP axis in the hindlimb than in the forelimb resulting in some Cre reporter cells contributing to digit IV. Induction at later time points labeled cells that become progressively restricted to more anterior digits and proximal structures. Comparison of Cre expression from the Alx4 promoter transgene with endogenous Alx4 expression reveals Cre expression is slightly expanded posteriorly relative to the endogenous Alx4 expression. Using Alx4-CreERT2 to induce loss of intraflagellar transport 88 (Ift88), a gene required for ciliogenesis, hedgehog signaling, and limb patterning, did not cause overt skeletal malformations. However, the efficiency of deletion, time needed for Ift88 protein turnover, and for cilia to regress may hinder using this approach to analyze cilia in the limb. Alx4-CreERT2 is also active in the mesonephros and nephric duct that contribute to the collecting tubules and ducts of the adult nephron. Embryonic activation of the Alx4-CreERT2 in the Ift88 conditional line results in cyst formation in the collecting tubules/ducts. Conclusion: Overall, the Alx4-CreERT2 line will be a new tool to assess cell fates and analyze gene function in the anterior limb, mesonephros, and nephric duct.Item A Translational Regulatory Mechanism Mediated by Hypusinated Eukaryotic Initiation Factor 5A Facilitates β-Cell Identity and Function(American Diabetes Association, 2024) Connors, Craig T.; Villaca, Catharina B. P.; Anderson-Baucum, Emily K.; Rosario, Spencer R.; Rutan, Caleb D.; Childress, Paul J.; Padgett, Leah R.; Robertson, Morgan A.; Mastracci, Teresa L.; Biology, School of ScienceAs professional secretory cells, β-cells require adaptable mRNA translation to facilitate a rapid synthesis of proteins, including insulin, in response to changing metabolic cues. Specialized mRNA translation programs are essential drivers of cellular development and differentiation. However, in the pancreatic β-cell, the majority of factors identified to promote growth and development function primarily at the level of transcription. Therefore, despite its importance, the regulatory role of mRNA translation in the formation and maintenance of functional β-cells is not well defined. In this study, we have identified a translational regulatory mechanism mediated by the specialized mRNA translation factor eukaryotic initiation factor 5A (eIF5A), which facilitates the maintenance of β-cell identity and function. The mRNA translation function of eIF5A is only active when it is posttranslationally modified ("hypusinated") by the enzyme deoxyhypusine synthase (DHPS). We have discovered that the absence of β-cell DHPS in mice reduces the synthesis of proteins critical to β-cell identity and function at the stage of β-cell maturation, leading to a rapid and reproducible onset of diabetes. Therefore, our work has revealed a gatekeeper of specialized mRNA translation that permits the β-cell, a metabolically responsive secretory cell, to maintain the integrity of protein synthesis necessary during times of induced or increased demand.