- Nicolas F. Berbari
Browse
Recent Submissions
Item Polyciliation of GnRH Neurons in Vivo and in Vitro(Oxford University Press, 2021) Brewer, Kathryn M.; Bansal, Ruchi; Engle, Staci E.; Antonellis, Patrick J.; Cummins, Theodore R.; Berbari, Nicolas F.; Biology, School of SciencePuberty and reproduction are initiated and controlled through the hypothalamic-pituitary-gonadal (HPG) axis. A critical surge of luteinizing hormone (LH) and follicle stimulating hormone (FSH) are released from the anterior pituitary upon release of gonadotrophins from gonadotrophin releasing hormone (GnRH) neurons. Thus, GnRH neurons are key regulators of the HPG axis. GnRH neurons become active when kisspeptin (Kiss1) neuropeptides are released from neurons in the arcuate nucleus. Kiss1 binds to the Kiss1 receptor (Kiss1R), a G-protein coupled receptor (GPCR) which localizes to the primary cilia of GnRH neurons. Loss-of-function mutations of Kiss1R cause hypogonadism in mouse and human models while gain-of-function mutations are associated with precocious puberty. Interestingly, the subset of GnRH neurons that express Kiss1R are observed to be polyciliated, possessing more than one primary cilia, an uncommon property as most neurons only possess a single, primary cilium. The mechanism and conditions leading to GnRH neuron polyciliation are unknown. It is also unclear if multiple cilia impact Kiss1R or other GPCR signaling in these neurons. Here, we utilize cultured mouse primary hypothalamic neurons to begin addressing some of these questions. We have confirmed with qPCR that the ligands GnRH and Kiss1, as well as Kiss1R, are all expressed in these cultures. Surprisingly, when treated with Kiss1 and GnRH ligands we observed a small subset of polyciliated neurons compared to vehicle treated neurons. These observations mirror what is seen during sexual maturation in vivo and suggest that our model system may help elucidate fundamental questions about how ciliary localization of Kiss1r and other GPCRs participate in initiation of puberty and regulation of reproduction. Future studies will focus on the mechanisms of polyciliation and the conditions needed to induce the formation of new cilia in GnRH neurons. Investigating neuronal polyciliation could provide insights into new signaling paradigm in hypogonadism and HPG signaling.Item Artificial Intelligence Approaches to Assessing Primary Cilia(MyJove Corp., 2021-05-01) Bansal, Ruchi; Engle, Staci E.; Kamba, Tisianna K.; Brewer, Kathryn M.; Lewis, Wesley R.; Berbari, Nicolas F.; Biology, School of ScienceCilia are microtubule based cellular appendages that function as signaling centers for a diversity of signaling pathways in many mammalian cell types. Cilia length is highly conserved, tightly regulated, and varies between different cell types and tissues and has been implicated in directly impacting their signaling capacity. For example, cilia have been shown to alter their lengths in response to activation of ciliary G protein-coupled receptors. However, accurately and reproducibly measuring the lengths of numerous cilia is a time-consuming and labor-intensive procedure. Current approaches are also error and bias prone. Artificial intelligence (Ai) programs can be utilized to overcome many of these challenges due to capabilities that permit assimilation, manipulation, and optimization of extensive data sets. Here, we demonstrate that an Ai module can be trained to recognize cilia in images from both in vivo and in vitro samples. After using the trained Ai to identify cilia, we are able to design and rapidly utilize applications that analyze hundreds of cilia in a single sample for length, fluorescence intensity and co-localization. This unbiased approach increased our confidence and rigor when comparing samples from different primary neuronal preps in vitro as well as across different brain regions within an animal and between animals. Moreover, this technique can be used to reliably analyze cilia dynamics from any cell type and tissue in a high-throughput manner across multiple samples and treatment groups. Ultimately, Ai-based approaches will likely become standard as most fields move toward less biased and more reproducible approaches for image acquisition and analysis.Item Spinophilin-dependent regulation of GluN2B-containing NMDAR-dependent calcium influx, GluN2B surface expression, and cleaved caspase expression(Wiley, 2023) Salek, Asma B.; Claeboe, Emily T.; Bansal, Ruchi; Berbari, Nicolas F.; Baucum, Anthony J., II.; Biology, School of ScienceN-methyl-d-aspartate receptors (NMDARs) are calcium-permeable ion channels that are ubiquitously expressed within the glutamatergic postsynaptic density. Phosphorylation of NMDAR subunits defines receptor conductance and surface localization, two alterations that can modulate overall channel activity. Modulation of NMDAR phosphorylation by kinases and phosphatases regulates the amount of calcium entering the cell and subsequent activation of calcium-dependent processes. The dendritic spine enriched protein, spinophilin, is the major synaptic protein phosphatase 1 (PP1) targeting protein. Depending on the substrate, spinophilin can act as either a PP1 targeting protein, to permit substrate dephosphorylation, or a PP1 inhibitory protein, to enhance substrate phosphorylation. Spinophilin limits NMDAR function in a PP1-dependent manner. Specifically, we have previously shown that spinophilin sequesters PP1 away from the GluN2B subunit of the NMDAR, which results in increased phosphorylation of Ser-1284 on GluN2B. However, how spinophilin modifies NMDAR function is unclear. Herein, we utilize a Neuro2A cell line to detail that Ser-1284 phosphorylation increases calcium influx via GluN2B-containing NMDARs. Moreover, overexpression of spinophilin decreases GluN2B-containing NMDAR activity by decreasing its surface expression, an effect that is independent of Ser-1284 phosphorylation. In hippocampal neurons isolated from spinophilin knockout animals, there is an increase in cleaved caspase-3 levels, a marker of calcium-associated apoptosis, compared with wildtype mice. Taken together, our data demonstrate that spinophilin regulates GluN2B containing NMDAR phosphorylation, channel function, and trafficking and that loss of spinophilin enhances neuronal cleaved caspase-3 expression.Item An inducible CiliaGFP mouse model for in vivo visualization and analysis of cilia in live tissue(BMC, 2013-07-03) O’Connor, Amber K.; Malarkey, Erik B.; Berbari, Nicolas F.; Croyle, Mandy J.; Haycraft, Courtney J.; Bell, P. Darwin; Hohenstein, Peter; Kesterson, Robert A.; Yoder, Bradley K.; Biology, School of ScienceBackground: Cilia are found on nearly every cell type in the mammalian body, and have been historically classified as either motile or immotile. Motile cilia are important for fluid and cellular movement; however, the roles of non-motile or primary cilia in most tissues remain unknown. Several genetic syndromes, called the ciliopathies, are associated with defects in cilia structure or function and have a wide range of clinical presentations. Much of what we know about the formation and maintenance of cilia comes from model systems like C. elegans and Chalmydomonas. Studies of mammalian cilia in live tissues have been hampered by difficulty visualizing them. Results: To facilitate analyses of mammalian cilia function we generated an inducible CiliaGFP mouse by targeting mouse cDNA encoding a cilia-localized protein somatostatin receptor 3 fused to GFP (Sstr3::GFP) into the ROSA26 locus. In this system, Sstr3::GFP is expressed from the ubiquitous ROSA26 promoter after Cre mediated deletion of an upstream Neo cassette flanked by lox P sites. Fluorescent cilia labeling was observed in a variety of live tissues and after fixation. Both cell-type specific and temporally regulated cilia labeling were obtained using multiple Cre lines. The analysis of renal cilia in anesthetized live mice demonstrates that cilia commonly lay nearly parallel to the apical surface of the tubule. In contrast, in more deeply anesthetized mice the cilia display a synchronized, repetitive oscillation that ceases upon death, suggesting a relationship to heart beat, blood pressure or glomerular filtration. Conclusions: The ability to visualize cilia in live samples within the CiliaGFP mouse will greatly aid studies of ciliary function. This mouse will be useful for in vivo genetic and pharmacological screens to assess pathways regulating cilia motility, signaling, assembly, trafficking, resorption and length control and to study cilia regulated physiology in relation to ciliopathy phenotypes.Item Hippocampal and Cortical Primary Cilia Are Required for Aversive Memory in Mice(Public Library of Science, 2014-09-03) Berbari, Nicolas F.; Malarkey, Erik B.; Yazdi, S.M. Zaki R.; McNair, Andrew D.; Kippe, Jordyn M.; Croyle, Mandy J.; Kraft, Timothy W.; Yoder, Bradley K.; Biology, School of ScienceIt has been known for decades that neurons throughout the brain possess solitary, immotile, microtubule based appendages called primary cilia. Only recently have studies tried to address the functions of these cilia and our current understanding remains poor. To determine if neuronal cilia have a role in behavior we specifically disrupted ciliogenesis in the cortex and hippocampus of mice through conditional deletion of the Intraflagellar Transport 88 (Ift88) gene. The effects on learning and memory were analyzed using both Morris Water Maze and fear conditioning paradigms. In comparison to wild type controls, cilia mutants displayed deficits in aversive learning and memory and novel object recognition. Furthermore, hippocampal neurons from mutants displayed an altered paired-pulse response, suggesting that loss of IFT88 can alter synaptic properties. A variety of other behavioral tests showed no significant differences between conditional cilia mutants and controls. This type of conditional allele approach could be used to distinguish which behavioral features of ciliopathies arise due to defects in neural development and which result from altered cell physiology. Ultimately, this could lead to an improved understanding of the basis for the cognitive deficits associated with human cilia disorders such as Bardet-Biedl syndrome, and possibly more common ailments including depression and schizophrenia.Item Leptin resistance is a secondary consequence of the obesity in ciliopathy mutant mice(National Academy of Science, 2013) Berbari, Nicolas F.; Pasek, Raymond C.; Malarkey, Erik B.; Yazdi, S.M. Zaki; McNair, Andrew D.; Lewis, Wesley R.; Nagy, Tim R.; Kesterson, Robert A.; Yoder, Bradley K.; Biology, School of ScienceAlthough primary cilia are well established as important sensory and signaling structures, their function in most tissues remains unknown. Obesity is a feature associated with some syndromes of cilia dysfunction, such as Bardet-Biedl syndrome (BBS) and Alström syndrome, as well as in several cilia mutant mouse models. Recent data indicate that obesity in BBS mutant mice is due to defects in leptin receptor trafficking and leptin resistance. Furthermore, induction of cilia loss in leptin-responsive proopiomelanocortin neurons results in obesity, implicating cilia on hypothalamic neurons in regulating feeding behavior. Here, we directly test the importance of the cilium as a mediator of the leptin response. In contrast to the current dogma, a longitudinal study of conditional Ift88 cilia mutant mice under different states of adiposity indicates that leptin resistance is present only when mutants are obese. Our studies show that caloric restriction leads to an altered anticipatory feeding behavior that temporarily abrogates the anorectic actions of leptin despite normalized circulating leptin levels. Interestingly, preobese Bbs4 mutant mice responded to the anorectic effects of leptin and did not display other phenotypes associated with defective leptin signaling. Furthermore, thermoregulation and activity measurements in cilia mutant mice are inconsistent with phenotypes previously observed in leptin deficient ob/ob mice. Collectively, these data indicate that cilia are not directly involved in leptin responses and that a defect in the leptin signaling axis is not the initiating event leading to hyperphagia and obesity associated with cilia dysfunction.Item Physiological Condition-Dependent Changes in Ciliary GPCR Localization in the Brain(Society for Neuroscience, 2023-03-13) Brewer, Kathryn M.; Engle, Staci E.; Bansal, Ruchi; Brewer, Katlyn K.; Jasso, Kalene R.; McIntyre, Jeremy C.; Vaisse, Christian; Reiter, Jeremy F.; Berbari, Nicolas F.; Biology, School of SciencePrimary cilia are cellular appendages critical for diverse types of Signaling. They are found on most cell types, including cells throughout the CNS. Cilia preferentially localize certain G-protein-coupled receptors (GPCRs) and are critical for mediating the signaling of these receptors. Several of these neuronal GPCRs have recognized roles in feeding behavior and energy homeostasis. Cell and model systems, such as Caenorhabditis elegans and Chlamydomonas, have implicated both dynamic GPCR cilia localization and cilia length and shape changes as key for signaling. It is unclear whether mammalian ciliary GPCRs use similar mechanisms in vivo and under what conditions these processes may occur. Here, we assess two neuronal cilia GPCRs, melanin-concentrating hormone receptor 1 (MCHR1) and neuropeptide-Y receptor 2 (NPY2R), as mammalian model ciliary receptors in the mouse brain. We test the hypothesis that dynamic localization to cilia occurs under physiological conditions associated with these GPCR functions. Both receptors are involved in feeding behaviors, and MCHR1 is also associated with sleep and reward. Cilia were analyzed with a computer-assisted approach allowing for unbiased and high-throughput analysis. We measured cilia frequency, length, and receptor occupancy. We observed changes in ciliary length, receptor occupancy, and cilia frequency under different conditions for one receptor but not another and in specific brain regions. These data suggest that dynamic cilia localization of GPCRs depends on properties of individual receptors and cells where they are expressed. A better understanding of subcellular localization dynamics of ciliary GPCRs could reveal unknown molecular mechanisms regulating behaviors like feeding.Item Neuronal cilia in energy homeostasis(Frontiers Media, 2022-12-08) Brewer, Kathryn M.; Brewer, Katlyn K.; Richardson, Nicholas C.; Berbari, Nicolas F.; Biology, School of ScienceA subset of genetic disorders termed ciliopathies are associated with obesity. The mechanisms behind cilia dysfunction and altered energy homeostasis in these syndromes are complex and likely involve deficits in both development and adult homeostasis. Interestingly, several cilia-associated gene mutations also lead to morbid obesity. While cilia have critical and diverse functions in energy homeostasis, including their roles in centrally mediated food intake and peripheral tissues, many questions remain. Here, we briefly discuss syndromic ciliopathies and monogenic cilia signaling mutations associated with obesity. We then focus on potential ways neuronal cilia regulate energy homeostasis. We discuss the literature around cilia and leptin-melanocortin signaling and changes in ciliary G protein-coupled receptor (GPCR) signaling. We also discuss the different brain regions where cilia are implicated in energy homeostasis and the potential for cilia dysfunction in neural development to contribute to obesity. We close with a short discussion on the challenges and opportunities associated with studies looking at neuronal cilia and energy homeostasis. This review highlights how neuronal cilia-mediated signaling is critical for proper energy homeostasis.Item A 360-kb interchromosomal duplication of the human HYDIN locus(Elsevier, 2006) Doggett, Norman A.; Xie, Gary; Meincke, Linda J.; Sutherland, Robert D.; Mundt, Mark O.; Berbari, Nicolas F.; Davy, Brian E.; Robinson, Michael L.; Rudd, M. Katharine; Weber, James L.; Stallings, Raymond L.; Han, Cliff; Biology, School of ScienceThe HYDIN gene located in human chromosome band 16q22.2 is a large gene encompassing 423 kb of genomic DNA that has been suggested as a candidate for an autosomal recessive form of congenital hydrocephalus. We have found that the human HYDIN locus has been very recently duplicated, with a nearly identical 360-kb paralogous segment inserted on chromosome 1q21.1. The duplication, among the largest interchromosomal segmental duplications described in humans, is not accounted for in the current human genome assembly and appears to be part of a greater than 550-kb contig that must lie within 1 of the 11 sequence gaps currently remaining in 1q21.1. Both copies of the HYDIN gene are expressed in alternatively spliced transcripts. Elucidation of the role of HYDIN in human disease susceptibility will require careful discrimination among the paralogous copies.Item Bardet–Biedl syndrome proteins are required for the localization of G protein-coupled receptors to primary cilia(National Academy of Science, 2008) Berbari, Nicolas F.; Lewis, Jacqueline S.; Bishop, Georgia A.; Askwith, Candice C.; Mykytyn, Kirk; Biology, School of SciencePrimary cilia are ubiquitous cellular appendages that provide important yet not well understood sensory and signaling functions. Ciliary dysfunction underlies numerous human genetic disorders. However, the precise defects in cilia function and the basis of disease pathophysiology remain unclear. Here, we report that the proteins disrupted in the human ciliary disorder Bardet–Biedl syndrome (BBS) are required for the localization of G protein-coupled receptors to primary cilia on central neurons. We demonstrate a lack of ciliary localization of somatostatin receptor type 3 (Sstr3) and melanin-concentrating hormone receptor 1 (Mchr1) in neurons from mice lacking the Bbs2 or Bbs4 gene. Because Mchr1 is involved in the regulation of feeding behavior and BBS is associated with hyperphagia-induced obesity, our results suggest that altered signaling caused by mislocalization of ciliary signaling proteins underlies the BBS phenotypes. Our results also provide a potential molecular mechanism to link cilia defects with obesity.