Controlled Fluxes of Silicon Nanoparticles to a Substrate in Pulsed Radio-Frequency Argon–Silane Plasmas

dc.contributor.authorLarriba-Andaluz, Carlos
dc.contributor.authorGirshick, Steven L.
dc.contributor.departmentDepartment of Engineering Technology, School of Engineering and Technologyen_US
dc.date.accessioned2017-07-20T17:32:48Z
dc.date.available2017-07-20T17:32:48Z
dc.date.issued2017-01
dc.description.abstractIt has been hypothesized that high-energy impact of very small silicon nanoparticles on a substrate may lead to epitaxial growth of silicon films at low substrate temperature. A possible means for producing such energetic nanoparticle fluxes involves pulsing an RF silane-containing plasma, and applying a positive DC bias to the substrate during the afterglow phase of each pulse so as to collect the negatively charged particles generated during the RF power on phase. We here report numerical modeling to provide a preliminary assessment of the feasibility of this scheme. The system modeled is a parallel-plate capacitively-coupled RF argon–silane plasma at pressures around 100 mTorr. Simulation results indicate that it is possible to achieve a periodic steady state in which each pulse delivers a controlled flux of nanoparticles to the biased substrate, that average particle sizes can be kept below 2–3 nm, that impact energies of the negatively-charged nanoparticles that are attracted by the applied bias can be maintained in the ~1 eV/atom range thought to be conducive to epitaxial growth without causing film damage, and that the volume fraction of neutral nanoparticles that deposit by low-velocity diffusion can be kept well below 1 %. The effects of several operating parameters are explored, including RF voltage, pressure, the value of the applied DC bias, and RF power on and off time during each pulse.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationLarriba-Andaluz, C., & Girshick, S. L. (2017). Controlled fluxes of silicon nanoparticles to a substrate in pulsed radio-frequency argon–silane plasmas. Plasma Chemistry and Plasma Processing, 37(1), 43-58. http://dx.doi.org/10.1007/s11090-016-9749-7en_US
dc.identifier.urihttps://hdl.handle.net/1805/13521
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.isversionof10.1007/s11090-016-9749-7en_US
dc.relation.journalPlasma Chemistry and Plasma Processingen_US
dc.rightsIUPUI Open Access Policyen_US
dc.sourceAuthoren_US
dc.subjectdusty plasmasen_US
dc.subjectsilicon nanoparticlesen_US
dc.subjectpulsed RF plasmasen_US
dc.titleControlled Fluxes of Silicon Nanoparticles to a Substrate in Pulsed Radio-Frequency Argon–Silane Plasmasen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Larriba-Andaluz_2016_controlled.pdf
Size:
2.26 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.88 KB
Format:
Item-specific license agreed upon to submission
Description: