Probing binding and cellular activity of pyrrolidinone and piperidinone small molecules targeting the urokinase receptor

If you need an accessible version of this item, please submit a remediation request.
Date
2013-12
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Wiley
Abstract

The urokinase receptor (uPAR) is a cell-surface protein that is part of an intricate web of transient and tight protein interactions that promote cancer cell invasion and metastasis. Here, we evaluate the binding and biological activity of a new class of pyrrolidinone and piperidinone compounds, along with derivatives of previously-identified pyrazole and propylamine compounds. Competition assays revealed that the compounds displace a fluorescently labeled peptide (AE147-FAM) with inhibition constant (Ki ) values ranging from 6 to 63 μM. Structure-based computational pharmacophore analysis followed by extensive explicit-solvent molecular dynamics (MD) simulations and free energy calculations suggested the pyrazole-based and piperidinone-based compounds adopt different binding modes, despite their similar two-dimensional structures. In cells, pyrazole-based compounds showed significant inhibition of breast adenocarcinoma (MDA-MB-231) and pancreatic ductal adenocarcinoma (PDAC) cell proliferation, but piperidinone-containing compounds exhibited no cytotoxicity even at concentrations of 100 μM. One pyrazole-based compound impaired MDA-MB-231 invasion, adhesion, and migration in a concentration-dependent manner, while the piperidinone inhibited only invasion. The pyrazole derivative inhibited matrix metalloprotease-9 (gelatinase) activity in a concentration-dependent manner, while the piperidinone showed no effect suggesting different mechanisms for inhibition of cell invasion. Signaling studies further highlighted these differences, showing that pyrazole compounds completely inhibited ERK phosphorylation and impaired HIF1α and NF-κB signaling, while pyrrolidinones and piperidinones had no effect. Annexin V staining suggested that the effect of the pyrazole-based compound on proliferation was due to cell killing through an apoptotic mechanism. The compounds identified represent valuable leads in the design of further derivatives with higher affinities and potential probes to unravel the protein-protein interactions of uPAR.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Mani, T., Liu, D., Zhou, D., Li, L., Knabe, W. E., Wang, F., … Meroueh, S. O. (2013). Probing Binding and Cellular Activity of Pyrrolidinone and Piperidinone Small Molecules Targeting the Urokinase Receptor. ChemMedChem, 8(12), 1963–1977. http://doi.org/10.1002/cmdc.201300340
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
ChemMedChem
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}