Family of chaotic maps from game theory

dc.contributor.authorChotibut, Thiparat
dc.contributor.authorFalniowski, Fryderyk
dc.contributor.authorMisiurewicz, Michał
dc.contributor.authorPiliouras, Georgios
dc.contributor.departmentMathematical Sciences, School of Scienceen_US
dc.date.accessioned2022-02-11T21:29:09Z
dc.date.available2022-02-11T21:29:09Z
dc.date.issued2021
dc.description.abstractFrom a two-agent, two-strategy congestion game where both agents apply the multiplicative weights update algorithm, we obtain a two-parameter family of maps of the unit square to itself. Interesting dynamics arise on the invariant diagonal, on which a two-parameter family of bimodal interval maps exhibits periodic orbits and chaos. While the fixed point b corresponding to a Nash equilibrium of such map f is usually repelling, it is globally Cesàro attracting on the diagonal, that is, limn→∞1n∑n−1k=0fk(x)=b for every x∈(0,1). This solves a known open question whether there exists a ‘natural’ nontrivial smooth map other than x↦axe−x with centres of mass of all periodic orbits coinciding. We also study the dependence of the dynamics on the two parameters.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationChotibut, T., Falniowski, F., Misiurewicz, M., & Piliouras, G. (2021). Family of chaotic maps from game theory. Dynamical Systems, 36(1), 48–63. https://doi.org/10.1080/14689367.2020.1795624en_US
dc.identifier.urihttps://hdl.handle.net/1805/27770
dc.language.isoenen_US
dc.publisherTaylor & Francisen_US
dc.relation.isversionof10.1080/14689367.2020.1795624en_US
dc.relation.journalDynamical Systemsen_US
dc.rightsPublisher Policyen_US
dc.sourceAuthoren_US
dc.subjectchaosen_US
dc.subjectinterval mapsen_US
dc.subjectcentre of massen_US
dc.titleFamily of chaotic maps from game theoryen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Chotibut2021Family-AAM.pdf
Size:
230.72 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: