The Influence of Transcranial Alternating Current Stimulation on Fatigue Resistance

dc.contributor.authorDe Guzman, Kayla A.
dc.contributor.authorYoung, Richard J.
dc.contributor.authorContini, Valentino
dc.contributor.authorClinton, Eliza
dc.contributor.authorHitchcock, Ashley
dc.contributor.authorRiley, Zachary A.
dc.contributor.authorPoston, Brach
dc.contributor.departmentExercise & Kinesiology, School of Health and Human Sciences
dc.date.accessioned2024-02-21T20:44:25Z
dc.date.available2024-02-21T20:44:25Z
dc.date.issued2023-08-21
dc.description.abstractPrevious research has shown that some forms of non-invasive brain stimulation can increase fatigue resistance. The purpose of this study is to determine the influence of transcranial alternating current stimulation (tACS) on the time to task failure (TTF) of a precision grip task. The study utilized a randomized, double-blind, SHAM-controlled, within-subjects design. Twenty-six young adults completed two experimental sessions (tACS and SHAM) with a 7-day washout period between sessions. Each session involved a fatiguing isometric contraction of the right hand with a precision grip with either a tACS or SHAM stimulation applied to the primary motor cortex (M1) simultaneously. For the fatiguing contraction, the participants matched an isometric target force of 20% of the maximum voluntary contraction (MVC) force until task failure. Pre- and post-MVCs were performed to quantify the force decline due to fatigue. Accordingly, the dependent variables were the TTF and MVC force decline as well as the average EMG activity, force error, and standard deviation (SD) of force during the fatiguing contractions. The results indicate that there were no significant differences in any of the dependent variables between the tACS and SHAM conditions (p value range: 0.256–0.820). These findings suggest that tACS does not increase the TTF during fatiguing contractions in young adults.
dc.eprint.versionFinal published version
dc.identifier.citationDe Guzman KA, Young RJ, Contini V, et al. The Influence of Transcranial Alternating Current Stimulation on Fatigue Resistance. Brain Sci. 2023;13(8):1225. Published 2023 Aug 21. doi:10.3390/brainsci13081225
dc.identifier.urihttps://hdl.handle.net/1805/38586
dc.language.isoen_US
dc.publisherMDPI
dc.relation.isversionof10.3390/brainsci13081225
dc.relation.journalBrain Sciences
dc.rightsAttribution 4.0 Internationalen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.sourcePMC
dc.subjectFatigue
dc.subjectMuscle
dc.subjecttACS
dc.titleThe Influence of Transcranial Alternating Current Stimulation on Fatigue Resistance
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
brainsci-13-01225.pdf
Size:
1.51 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: