PNPase knockout results in mtDNA loss and an altered metabolic gene expression program

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2018-07-19
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Public Library of Science
Abstract

Polynucleotide phosphorylase (PNPase) is an essential mitochondria-localized exoribonuclease implicated in multiple biological processes and human disorders. To reveal role(s) for PNPase in mitochondria, we established PNPase knockout (PKO) systems by first shifting culture conditions to enable cell growth with defective respiration. Interestingly, PKO established in mouse embryonic fibroblasts (MEFs) resulted in the loss of mitochondrial DNA (mtDNA). The transcriptional profile of PKO cells was similar to rho0 mtDNA deleted cells, with perturbations in cholesterol (FDR = 6.35 x 10-13), lipid (FDR = 3.21 x 10-11), and secondary alcohol (FDR = 1.04x10-12) metabolic pathway gene expression compared to wild type parental (TM6) MEFs. Transcriptome analysis indicates processes related to axonogenesis (FDR = 4.49 x 10-3), axon development (FDR = 4.74 x 10-3), and axonal guidance (FDR = 4.74 x 10-3) were overrepresented in PKO cells, consistent with previous studies detailing causative PNPase mutations in delayed myelination, hearing loss, encephalomyopathy, and chorioretinal defects in humans. Overrepresentation analysis revealed alterations in metabolic pathways in both PKO and rho0 cells. Therefore, we assessed the correlation of genes implicated in cell cycle progression and total metabolism and observed a strong positive correlation between PKO cells and rho0 MEFs compared to TM6 MEFs. We quantified the normalized biomass accumulation rate of PKO clones at 1.7% (SD ± 2.0%) and 2.4% (SD ± 1.6%) per hour, which was lower than TM6 cells at 3.3% (SD ± 3.5%) per hour. Furthermore, PKO in mouse inner ear hair cells caused progressive hearing loss that parallels human familial hearing loss previously linked to mutations in PNPase. Combined, our study reports that knockout of a mitochondrial nuclease results in mtDNA loss and suggests that mtDNA maintenance could provide a unifying connection for the large number of biological activities reported for PNPase.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Shimada, E., Ahsan, F. M., Nili, M., Huang, D., Atamdede, S., TeSlaa, T., … Teitell, M. A. (2018). PNPase knockout results in mtDNA loss and an altered metabolic gene expression program. PloS one, 13(7), e0200925. doi:10.1371/journal.pone.0200925
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
PloS one
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}