Genetically increasing flux through β-oxidation in skeletal muscle increases mitochondrial reductive stress and glucose intolerance

Date
2021
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
American Physiological Society
Abstract

Elevated mitochondrial hydrogen peroxide (H2O2) emission and an oxidative shift in cytosolic redox environment have been linked to high-fat-diet-induced insulin resistance in skeletal muscle. To test specifically whether increased flux through mitochondrial fatty acid oxidation, in the absence of elevated energy demand, directly alters mitochondrial function and redox state in muscle, two genetic models characterized by increased muscle β-oxidation flux were studied. In mice overexpressing peroxisome proliferator-activated receptor-α in muscle (MCK-PPARα), lipid-supported mitochondrial respiration, membrane potential (ΔΨm), and H2O2 production rate (JH2O2) were increased, which coincided with a more oxidized cytosolic redox environment, reduced muscle glucose uptake, and whole body glucose intolerance despite an increased rate of energy expenditure. Similar results were observed in lipin-1-deficient, fatty-liver dystrophic mice, another model characterized by increased β-oxidation flux and glucose intolerance. Crossing MCAT (mitochondria-targeted catalase) with MCK-PPARα mice normalized JH2O2 production, redox environment, and glucose tolerance, but surprisingly, both basal and absolute insulin-stimulated rates of glucose uptake in muscle remained depressed. Also surprising, when placed on a high-fat diet, MCK-PPARα mice were characterized by much lower whole body, fat, and lean mass as well as improved glucose tolerance relative to wild-type mice, providing additional evidence that overexpression of PPARα in muscle imposes more extensive metabolic stress than experienced by wild-type mice on a high-fat diet. Overall, the findings suggest that driving an increase in skeletal muscle fatty acid oxidation in the absence of metabolic demand imposes mitochondrial reductive stress and elicits multiple counterbalance metabolic responses in an attempt to restore bioenergetic homeostasis.

NEW & NOTEWORTHY: Prior work has suggested that mitochondrial dysfunction is an underlying cause of insulin resistance in muscle because it limits fatty acid oxidation and therefore leads to the accumulation of cytotoxic lipid intermediates. The implication has been that therapeutic strategies to accelerate β-oxidation will be protective. The current study provides evidence that genetically increasing flux through β-oxidation in muscle imposes reductive stress that is not beneficial but rather detrimental to metabolic regulation.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Smith CD, Lin CT, McMillin SL, et al. Genetically increasing flux through β-oxidation in skeletal muscle increases mitochondrial reductive stress and glucose intolerance. Am J Physiol Endocrinol Metab. 2021;320(5):E938-E950. doi:10.1152/ajpendo.00010.2021
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
American Journal of Physiology: Endocrinology and Metabolism
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
This item is under embargo {{howLong}}