Scoring of tumor-infiltrating lymphocytes: From visual estimation to machine learning

dc.contributor.authorKlauschen, F.
dc.contributor.authorMüller, K.-R.
dc.contributor.authorBinder, A.
dc.contributor.authorBockmayr, M.
dc.contributor.authorHägele, M.
dc.contributor.authorSeegerer, P.
dc.contributor.authorWienert, S.
dc.contributor.authorPruneri, G.
dc.contributor.authorde Maria, S.
dc.contributor.authorBadve, Sunil
dc.contributor.authorMichiels, S.
dc.contributor.authorNielsen, T. O.
dc.contributor.authorAdams, S.
dc.contributor.authorSavas, P.
dc.contributor.authorSymmans, F.
dc.contributor.authorWillis, S.
dc.contributor.authorGruosso, T.
dc.contributor.authorPark, M.
dc.contributor.authorHaibe-Kains, B.
dc.contributor.authorGallas, B.
dc.contributor.authorThompson, A. M.
dc.contributor.authorCree, I.
dc.contributor.authorSotiriou, C.
dc.contributor.authorHewitt, S. M.
dc.contributor.authorRimm, D.
dc.contributor.authorViale, G.
dc.contributor.authorLoi, S.
dc.contributor.authorLoibl, S.
dc.contributor.authorSalgado, R.
dc.contributor.authorDenkert, C.
dc.contributor.departmentPathology and Laboratory Medicine, School of Medicineen_US
dc.date.accessioned2019-04-26T17:02:09Z
dc.date.available2019-04-26T17:02:09Z
dc.date.issued2018-10
dc.description.abstractThe extent of tumor-infiltrating lymphocytes (TILs), along with immunomodulatory ligands, tumor-mutational burden and other biomarkers, has been demonstrated to be a marker of response to immune-checkpoint therapy in several cancers. Pathologists have therefore started to devise standardized visual approaches to quantify TILs for therapy prediction. However, despite successful standardization efforts visual TIL estimation is slow, with limited precision and lacks the ability to evaluate more complex properties such as TIL distribution patterns. Therefore, computational image analysis approaches are needed to provide standardized and efficient TIL quantification. Here, we discuss different automated TIL scoring approaches ranging from classical image segmentation, where cell boundaries are identified and the resulting objects classified according to shape properties, to machine learning-based approaches that directly classify cells without segmentation but rely on large amounts of training data. In contrast to conventional machine learning (ML) approaches that are often criticized for their "black-box" characteristics, we also discuss explainable machine learning. Such approaches render ML results interpretable and explain the computational decision-making process through high-resolution heatmaps that highlight TILs and cancer cells and therefore allow for quantification and plausibility checks in biomedical research and diagnostics.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationKlauschen, F., Müller, K.-R., Binder, A., Bockmayr, M., Hägele, M., Seegerer, P., … Denkert, C. (2018). Scoring of tumor-infiltrating lymphocytes: From visual estimation to machine learning. Seminars in Cancer Biology, 52, 151–157. https://doi.org/10.1016/j.semcancer.2018.07.001en_US
dc.identifier.urihttps://hdl.handle.net/1805/18974
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.isversionof10.1016/j.semcancer.2018.07.001en_US
dc.relation.journalSeminars in Cancer Biologyen_US
dc.rightsPublisher Policyen_US
dc.sourceAuthoren_US
dc.subjecttumor-infiltrating lymphocytesen_US
dc.subjectcancer biomarkersen_US
dc.subjectscoringen_US
dc.titleScoring of tumor-infiltrating lymphocytes: From visual estimation to machine learningen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Klauschen_2018_scoring.pdf
Size:
532.46 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: