Organ-specific adaptive signaling pathway activation in metastatic breast cancer cells
Date
Language
Embargo Lift Date
Department
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
Breast cancer metastasizes to bone, visceral organs, and/or brain depending on the subtype, which may involve activation of a host organ-specific signaling network in metastatic cells. To test this possibility, we determined gene expression patterns in MDA-MB-231 cells and its mammary fat pad tumor (TMD-231), lung-metastasis (LMD-231), bone-metastasis (BMD-231), adrenal-metastasis (ADMD-231) and brain-metastasis (231-BR) variants. When gene expression between metastases was compared, 231-BR cells showed the highest gene expression difference followed by ADMD-231, LMD-231, and BMD-231 cells. Neuronal transmembrane proteins SLITRK2, TMEM47, and LYPD1 were specifically overexpressed in 231-BR cells. Pathway-analyses revealed activation of signaling networks that would enable cancer cells to adapt to organs of metastasis such as drug detoxification/oxidative stress response/semaphorin neuronal pathway in 231-BR, Notch/orphan nuclear receptor signals involved in steroidogenesis in ADMD-231, acute phase response in LMD-231, and cytokine/hematopoietic stem cell signaling in BMD-231 cells. Only NF-κB signaling pathway activation was common to all except BMD-231 cells. We confirmed NF-κB activation in 231-BR and in a brain metastatic variant of 4T1 cells (4T1-BR). Dimethylaminoparthenolide inhibited NF-κB activity, LYPD1 expression, and proliferation of 231-BR and 4T1-BR cells. Thus, transcriptome change enabling adaptation to host organs is likely one of the mechanisms associated with organ-specific metastasis and could potentially be targeted therapeutically.