Influence of Choline Chloride/Urea and Glycerol Plasticizers on the Mechanical Properties of Thermoplastic Starch Plastics

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2024-03-09
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
MDPI
Abstract

Bio-based plastics made of food-safe compostable materials, such as thermoplastic starch (TPS), can be designed into films that have potential to replace many non-biodegradable single-use plastic (SUP) items. TPS film characteristics, such as elongation at break and tensile strength, are largely affected by the choice of the plasticizers used in formulation. Our work identifies the mechanical properties and the chemical structural differences between TPS films made with two different plasticizer mixtures that have not yet been compared alongside one another: deep eutectic solvent choline chloride/urea (1:2) (CC:U) and glycerol with an acetic acid catalyst (AA:G). Potato-based TPS samples were formed by mixing each plasticizer with a consistent amount of potato starch and distilled water with heat. After gelation formation, the viscous TPS mixture was centrifuged to degas and extruded. Films were dried at controlled room temperature. Characterization included the tensile testing of coupons according to ASTM (American Society of Testing and Materials) standard D638, attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy, X-ray diffraction (XRD), melting point (MP), and scanning electron microscopy (SEM). The AA:G films displayed significantly higher tensile strength (M = 2.04 ± 1.24 MPa) than the CC:U films (M = 0.18 ± 0.08 MPa); however, the CC:U films had higher elongation at break (M = 47.2 ± 3.6%) than the AA:G films (M = 31.1 ± 12.6%). This can be explained by the difference in functional groups, composition, and the degree of crystallinity evidenced by the FTIR, XRD, MP, and SEM results. Our findings suggest that potato-based TPS films with an AA:G plasticizer mixture hold promise for SUP applications that require more strength, while CC:U films may be more suited for wraps and bags that require flexibility. These innovations can aid to mitigate the environmental impact of harmful plastic waste.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Staker J, Schott S, Singh R, et al. Influence of Choline Chloride/Urea and Glycerol Plasticizers on the Mechanical Properties of Thermoplastic Starch Plastics. Polymers (Basel). 2024;16(6):751. Published 2024 Mar 9. doi:10.3390/polym16060751
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Polymers
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}