Pattern Discovery from High-Order Drug-Drug Interaction Relations

dc.contributor.authorChiang, Wen-Hao
dc.contributor.authorSchleyer, Titus
dc.contributor.authorShen, Li
dc.contributor.authorLi, Lang
dc.contributor.authorNing, Xia
dc.contributor.departmentComputer and Information Science, School of Scienceen_US
dc.date.accessioned2023-06-05T14:57:11Z
dc.date.available2023-06-05T14:57:11Z
dc.date.issued2018-06-18
dc.description.abstractDrug-drug interactions (DDIs) and associated adverse drug reactions (ADRs) represent a significant public health problem in the USA. The research presented in this manuscript tackles the problems of representing, quantifying, discovering, and visualizing patterns from high-order DDIs in a purely data-driven fashion within a unified graph-based framework and via unified convolution-based algorithms. We formulate the problem based on the notions of nondirectional DDI relations (DDI-nd's) and directional DDI relations (DDI-d's), and correspondingly developed weighted complete graphs and hyper-graphlets for their representation, respectively. We also develop a convolutional scheme and its stochastic algorithm SD2ID2S to discover DDI-based drug-drug similarities. Our experimental results demonstrate that such approaches can well capture the patterns of high-order DDIs.en_US
dc.eprint.versionFinal published versionen_US
dc.identifier.citationChiang WH, Schleyer T, Shen L, Li L, Ning X. Pattern Discovery from High-Order Drug-Drug Interaction Relations. J Healthc Inform Res. 2018;2(3):272-304. Published 2018 Jun 18. doi:10.1007/s41666-018-0020-2en_US
dc.identifier.urihttps://hdl.handle.net/1805/33499
dc.language.isoen_USen_US
dc.publisherSpringeren_US
dc.relation.isversionof10.1007/s41666-018-0020-2en_US
dc.relation.journalJournal of Healthcare Informatics Researchen_US
dc.rightsPublisher Policyen_US
dc.sourcePMCen_US
dc.subjectDrug-drug interactionsen_US
dc.subjectDrug-drug similaritiesen_US
dc.subjectGraph representationen_US
dc.subjectConvolutionen_US
dc.subjectStochastic algorithmen_US
dc.titlePattern Discovery from High-Order Drug-Drug Interaction Relationsen_US
dc.typeArticleen_US
ul.alternative.fulltexthttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8982853/en_US
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
41666_2018_Article_20.pdf
Size:
6.82 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: