Pattern Discovery from High-Order Drug-Drug Interaction Relations
Date
Language
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
Drug-drug interactions (DDIs) and associated adverse drug reactions (ADRs) represent a significant public health problem in the USA. The research presented in this manuscript tackles the problems of representing, quantifying, discovering, and visualizing patterns from high-order DDIs in a purely data-driven fashion within a unified graph-based framework and via unified convolution-based algorithms. We formulate the problem based on the notions of nondirectional DDI relations (DDI-nd's) and directional DDI relations (DDI-d's), and correspondingly developed weighted complete graphs and hyper-graphlets for their representation, respectively. We also develop a convolutional scheme and its stochastic algorithm SD2ID2S to discover DDI-based drug-drug similarities. Our experimental results demonstrate that such approaches can well capture the patterns of high-order DDIs.