Intracortical Bone Remodeling Variation Shows Strong Genetic Effects

dc.contributor.authorHavill, L. M.
dc.contributor.authorAllen, M. R.
dc.contributor.authorHarris, J. A. K.
dc.contributor.authorLevine, S. M.
dc.contributor.authorCoan, H. B.
dc.contributor.authorMahaney, M. C.
dc.contributor.authorNicolella, D. P.
dc.contributor.departmentAnatomy, Cell Biology and Physiology, School of Medicine
dc.date.accessioned2025-05-01T15:30:16Z
dc.date.available2025-05-01T15:30:16Z
dc.date.issued2013
dc.description.abstractIntracortical microstructure influences crack propagation and arrest within bone cortex. Genetic variation in intracortical remodeling may contribute to mechanical integrity and, therefore, fracture risk. Our aim was to determine the degree to which normal population-level variation in intracortical microstructure is due to genetic variation. We examined right femurs from 101 baboons (74 females, 27 males; aged 7-33 years) from a single, extended pedigree to determine osteon number, osteon area (On.Ar), haversian canal area, osteon population density, percent osteonal bone (%On.B), wall thickness (W.Th), and cortical porosity (Ct.Po). Through evaluation of the covariance in intracortical properties between pairs of relatives, we quantified the contribution of additive genetic effects (heritability [h (2)]) to variation in these traits using a variance decomposition approach. Significant age and sex effects account for 9 % (Ct.Po) to 21 % (W.Th) of intracortical microstructural variation. After accounting for age and sex, significant genetic effects are evident for On.Ar (h (2) = 0.79, p = 0.002), %On.B (h (2) = 0.82, p = 0.003), and W.Th (h (2) = 0.61, p = 0.013), indicating that 61-82 % of the residual variation (after accounting for age and sex effects) is due to additive genetic effects. This corresponds to 48-75 % of the total phenotypic variance. Our results demonstrate that normal, population-level variation in cortical microstructure is significantly influenced by genes. As a critical mediator of crack behavior in bone cortex, intracortical microstructural variation provides another mechanism through which genetic variation may affect fracture risk.
dc.eprint.versionFinal published version
dc.identifier.citationHavill LM, Allen MR, Harris JA, et al. Intracortical bone remodeling variation shows strong genetic effects. Calcif Tissue Int. 2013;93(5):472-480. doi:10.1007/s00223-013-9775-x
dc.identifier.urihttps://hdl.handle.net/1805/47614
dc.language.isoen_US
dc.publisherSpringer
dc.relation.isversionof10.1007/s00223-013-9775-x
dc.relation.journalCalcified Tissue International
dc.rightsAttribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourcePMC
dc.subjectPrimate
dc.subjectOsteoporosis
dc.subjectBiomechanics
dc.subjectPopulation studies
dc.subjectBone histomorphometry
dc.titleIntracortical Bone Remodeling Variation Shows Strong Genetic Effects
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Havill2013Intracortical-CCBY.pdf
Size:
373.74 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.04 KB
Format:
Item-specific license agreed upon to submission
Description: