Intracortical Bone Remodeling Variation Shows Strong Genetic Effects

Date
2013
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Springer
Can't use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.
Abstract

Intracortical microstructure influences crack propagation and arrest within bone cortex. Genetic variation in intracortical remodeling may contribute to mechanical integrity and, therefore, fracture risk. Our aim was to determine the degree to which normal population-level variation in intracortical microstructure is due to genetic variation. We examined right femurs from 101 baboons (74 females, 27 males; aged 7-33 years) from a single, extended pedigree to determine osteon number, osteon area (On.Ar), haversian canal area, osteon population density, percent osteonal bone (%On.B), wall thickness (W.Th), and cortical porosity (Ct.Po). Through evaluation of the covariance in intracortical properties between pairs of relatives, we quantified the contribution of additive genetic effects (heritability [h (2)]) to variation in these traits using a variance decomposition approach. Significant age and sex effects account for 9 % (Ct.Po) to 21 % (W.Th) of intracortical microstructural variation. After accounting for age and sex, significant genetic effects are evident for On.Ar (h (2) = 0.79, p = 0.002), %On.B (h (2) = 0.82, p = 0.003), and W.Th (h (2) = 0.61, p = 0.013), indicating that 61-82 % of the residual variation (after accounting for age and sex effects) is due to additive genetic effects. This corresponds to 48-75 % of the total phenotypic variance. Our results demonstrate that normal, population-level variation in cortical microstructure is significantly influenced by genes. As a critical mediator of crack behavior in bone cortex, intracortical microstructural variation provides another mechanism through which genetic variation may affect fracture risk.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Havill LM, Allen MR, Harris JA, et al. Intracortical bone remodeling variation shows strong genetic effects. Calcif Tissue Int. 2013;93(5):472-480. doi:10.1007/s00223-013-9775-x
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Calcified Tissue International
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}