3D Mapping Reveals a Complex and Transient Interstitial Matrix During Murine Kidney Development

If you need an accessible version of this item, please submit a remediation request.
Date
2021
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Wolters Kluwer
Abstract

ESKD is increasing in incidence and a limited number of organs are available for transplantation. Therefore, researchers have focused on understanding how cellular signaling influences kidney development to expand strategies to rebuild a kidney. However, the extracellular matrix (ECM), another critical component that biomechanically regulates nephrogenesis, has been largely neglected. Proteomics and 3D imaging of the murine kidney resolved previously undescribed dynamics of the interstitial matrix in the cortex and corticomedullary junction during development. Combined with cells and growth factors, scaffolds modeled after the composition and organization of the developmental ECM have the potential to improve engineered models of the kidney.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Lipp SN, Jacobson KR, Hains DS, Schwarderer AL, Calve S. 3D Mapping Reveals a Complex and Transient Interstitial Matrix During Murine Kidney Development. J Am Soc Nephrol. 2021;32(7):1649-1665. doi:10.1681/ASN.2020081204
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Journal of the American Society of Nephrology
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
This item is under embargo {{howLong}}