Doc2b Protects β-Cells Against Inflammatory Damage and Enhances Function

Date
2018-07
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
American Diabetes Association
Abstract

Loss of functional β-cell mass is an early feature of type 1 diabetes. To release insulin, β-cells require soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes, as well as SNARE complex regulatory proteins like double C2 domain-containing protein β (Doc2b). We hypothesized that Doc2b deficiency or overabundance may confer susceptibility or protection, respectively, to the functional β-cell mass. Indeed, Doc2b+/- knockout mice show an unusually severe response to multiple-low-dose streptozotocin (MLD-STZ), resulting in more apoptotic β-cells and a smaller β-cell mass. In addition, inducible β-cell-specific Doc2b-overexpressing transgenic (βDoc2b-dTg) mice show improved glucose tolerance and resist MLD-STZ-induced disruption of glucose tolerance, fasting hyperglycemia, β-cell apoptosis, and loss of β-cell mass. Mechanistically, Doc2b enrichment enhances glucose-stimulated insulin secretion (GSIS) and SNARE activation and prevents the appearance of apoptotic markers in response to cytokine stress and thapsigargin. Furthermore, expression of a peptide containing the Doc2b tandem C2A and C2B domains is sufficient to confer the beneficial effects of Doc2b enrichment on GSIS, SNARE activation, and apoptosis. These studies demonstrate that Doc2b enrichment in the β-cell protects against diabetogenic and proapoptotic stress. Furthermore, they identify a Doc2b peptide that confers the beneficial effects of Doc2b and may be a therapeutic candidate for protecting functional β-cell mass.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Aslamy, A., Oh, E., Olson, E. M., Zhang, J., Ahn, M., Moin, A., … Thurmond, D. C. (2018). Doc2b Protects β-Cells Against Inflammatory Damage and Enhances Function. Diabetes, 67(7), 1332–1344. doi:10.2337/db17-1352
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Diabetes
Rights
Publisher Policy
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}