The role of the Nrf2/Keap1 signaling cascade in mechanobiology and bone health

If you need an accessible version of this item, please submit a remediation request.
Date
2021-11-22
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Elsevier
Abstract

In conjunction with advancements in modern medicine, bone health is becoming an increasingly prevalent concern among a global population with an ever-growing life expectancy. Countless factors contribute to declining bone strength, and age exacerbates nearly all of them. The detrimental effects of bone loss have a profound impact on quality of life. As such, there is a great need for full exploration of potential therapeutic targets that may provide antiaging benefits and increase the life and strength of bone tissues. The Keap1-Nrf2 pathway is a promising avenue of this research. The cytoprotective and antioxidant functions of this pathway have been shown to mitigate the deleterious effects of oxidative stress on bone tissues, but the exact cellular and molecular mechanisms by which this occurs are not yet fully understood. Presently, refined animal and loading models are allowing exploration into the effect of the Keap1-Nrf2 pathway in a tissue-specific or even cell-specific manner. In addition, Nrf2 activators currently undergoing clinical trials can be utilized to investigate the particular cellular mechanisms at work in this cytoprotective cascade. Although the timing and dosing of treatment with Nrf2 activators need to be further investigated, these activators have great potential to be used clinically to prevent and treat osteoporosis.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Priddy C, Li J. The role of the Nrf2/Keap1 signaling cascade in mechanobiology and bone health. Bone Rep. 2021;15:101149. Published 2021 Nov 22. doi:10.1016/j.bonr.2021.101149
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Bone Reports
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}