Specific Lowering of Asymmetric Dimethylarginine by Pharmacological Dimethylarginine Dimethylaminohydrolase Improves Endothelial Function, Reduces Blood Pressure and Ischemia-Reperfusion Injury

Date
2021
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
American Society for Pharmacology and Experimental Therapeutics
Abstract

Multiple clinical and preclinical studies have demonstrated that plasma levels of asymmetric dimethylarginine (ADMA) are strongly associated with hypertension, diabetes, and cardiovascular and renal disease. Genetic studies in rodents have provided evidence that ADMA metabolizing dimethylarginine dimethylaminohydrolase (DDAH)-1 plays a role in hypertension and cardiovascular disease. However, it remains to be established whether ADMA is a bystander, biomarker, or sufficient contributor to the pathogenesis of hypertension and cardiovascular and renal disease. The goal of the present investigation was to develop a pharmacological molecule to specifically lower ADMA and determine the physiologic consequences of ADMA lowering in animal models. Further, we sought to determine whether ADMA lowering will produce therapeutic benefits in vascular disease in which high ADMA levels are produced. A novel long-acting recombinant DDAH (M-DDAH) was produced by post-translational modification, which effectively lowered ADMA in vitro and in vivo. Treatment with M-DDAH improved endothelial function as measured by increase in cGMP and in vitro angiogenesis. In a rat model of hypertension, M-DDAH significantly reduced blood pressure (vehicle: 187 ± 19 mm Hg vs. M-DDAH: 157 ± 23 mm Hg; P < 0.05). Similarly, in a rat model of ischemia-reperfusion injury, M-DDAH significantly improved renal function as measured by reduction in serum creatinine (vehicle: 3.14 ± 0.74 mg/dl vs. M-DDAH: 1.1 ± 0.75 mg/dl; P < 0.01), inflammation, and injured tubules (vehicle: 73.1 ± 11.1% vs. M-DDAH: 22.1 ± 18.4%; P < 0.001). These pharmacological studies have provided direct evidence for a pathologic role of ADMA and the therapeutic benefits of ADMA lowering in preclinical models of endothelial dysfunction, hypertension, and ischemia-reperfusion injury. SIGNIFICANCE STATEMENT: High levels of ADMA occur in patients with cardiovascular and renal disease. A novel modified dimethylarginine dimethylaminohydrolase by PEGylation effectively lowers ADMA, improves endothelial function, reduces blood pressure and protects from ischemia-reperfusion renal injury.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Lee Y, Mehrotra P, Basile D, et al. Specific Lowering of Asymmetric Dimethylarginine by Pharmacological Dimethylarginine Dimethylaminohydrolase Improves Endothelial Function, Reduces Blood Pressure and Ischemia-Reperfusion Injury [published correction appears in J Pharmacol Exp Ther. 2021 Mar;376(3):463]. J Pharmacol Exp Ther. 2021;376(2):181-189. doi:10.1124/jpet.120.000212
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
The Journal of Pharmacology and Experimental Therapeutics
Rights
Publisher Policy
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
This item is under embargo {{howLong}}