Silver Nanoparticle Protein Corona Composition in Cell Culture Media

dc.contributor.authorShannahan, Jonathan H.
dc.contributor.authorLai, Xianyin
dc.contributor.authorKe, Pu Chun
dc.contributor.authorPodila, Ramakrishna
dc.contributor.authorBrown, Jared M.
dc.contributor.authorWitzmann, Frank A.
dc.contributor.departmentCellular and Integrative Physiology, School of Medicine
dc.date.accessioned2025-05-01T10:19:43Z
dc.date.available2025-05-01T10:19:43Z
dc.date.issued2013-09-09
dc.description.abstractThe potential applications of nanomaterials as drug delivery systems and in other products continue to expand. Upon introduction into physiological environments and driven by energetics, nanomaterials readily associate proteins forming a protein corona (PC) on their surface. This PC influences the nanomaterial's surface characteristics and may impact their interaction with cells. To determine the biological impact of nanomaterial exposure as well as nanotherapeutic applications, it is necessary to understand PC formation. Utilizing a label-free mass spectrometry-based proteomics approach, we examined the composition of the PC for a set of four silver nanoparticles (AgNPs) including citrate-stabilized and polyvinlypyrrolidone-stabilized (PVP) colloidal silver (20 or 110 nm diameter). To simulate cell culture conditions, AgNPs were incubated for 1 h in Dulbecco's Modified Eagle Medium supplemented with 10% fetal bovine serum, washed, coronal proteins solubilized, and proteins identified and quantified by label-free LC-MS/MS. To determine which attributes influence PC formation, the AgNPs were characterized in both water and cell culture media with 10% FBS. All AgNPs associated a common subset of 11 proteins including albumin, apolipoproteins, keratins, and other serum proteins. 110 nm citrate- and PVP-stabilized AgNPs were found to bind the greatest number of proteins (79 and 85 respectively) compared to 20 nm citrate- and PVP-stabilized AgNPs (45 and 48 respectively), suggesting a difference in PC formation based on surface curvature. While no relationships were found for other protein parameters (isoelectric point or aliphatic index), the PC on 20 nm AgNPs (PVP and citrate) consisted of more hydrophobic proteins compared to 110 nm AgNPs implying that this class of proteins are more receptive to curvature-induced folding and crowding in exchange for an increased hydration in the aqueous environment. These observations demonstrate the significance of electrostatic and hydrophobic interactions in the formation of the PC which may have broad biological and toxicological implications.
dc.eprint.versionFinal published version
dc.identifier.citationShannahan JH, Lai X, Ke PC, Podila R, Brown JM, Witzmann FA. Silver nanoparticle protein corona composition in cell culture media. PLoS One. 2013;8(9):e74001. Published 2013 Sep 9. doi:10.1371/journal.pone.0074001
dc.identifier.urihttps://hdl.handle.net/1805/47578
dc.language.isoen_US
dc.publisherPublic Library of Science
dc.relation.isversionof10.1371/journal.pone.0074001
dc.relation.journalPLoS One
dc.rightsAttribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourcePMC
dc.subjectMetal nanoparticles
dc.subjectCarrier proteins
dc.subjectProtein binding
dc.subjectSilver
dc.titleSilver Nanoparticle Protein Corona Composition in Cell Culture Media
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Shannahan2013Silver-CCBY.pdf
Size:
1.02 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.04 KB
Format:
Item-specific license agreed upon to submission
Description: