Evaluating Meta‐Learners to Analyze Treatment Heterogeneity in Survival Data: Application to Electronic Health Records of Pediatric Asthma Care in COVID‐19 Pandemic

Date
2025
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Wiley
Abstract

An important aspect of precision medicine focuses on characterizing diverse responses to treatment due to unique patient characteristics, also known as heterogeneous treatment effects (HTE) or individualized treatment effects (ITE), and identifying beneficial subgroups with enhanced treatment effects. Estimating HTE with right-censored data in observational studies remains challenging. In this paper, we propose a pseudo-ITE-based framework for analyzing HTE in survival data, which includes a group of meta-learners for estimating HTE, a variable importance metric for identifying predictive variables to HTE, and a data-adaptive procedure to select subgroups with enhanced treatment effects. We evaluate the finite sample performance of the framework under various observational study settings. Furthermore, we applied the proposed methods to analyze the treatment heterogeneity of a written asthma action plan (WAAP) on time-to-ED (Emergency Department) return due to asthma exacerbation using a large asthma electronic health records dataset with visit records expanded from pre- to post-COVID-19 pandemic. We identified vulnerable subgroups of patients with poorer asthma outcomes but enhanced benefits from WAAP and characterized patient profiles. Our research provides valuable insights for healthcare providers on the strategic distribution of WAAP, particularly during disruptive public health crises, ultimately improving the management and control of pediatric asthma.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Bo N, Jeong JH, Forno E, Ding Y. Evaluating Meta-Learners to Analyze Treatment Heterogeneity in Survival Data: Application to Electronic Health Records of Pediatric Asthma Care in COVID-19 Pandemic. Stat Med. 2025;44(3-4):e10333. doi:10.1002/sim.10333
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Statistics in Medicine
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}