Targeting effector memory T cells with alefacept in new onset type 1 diabetes: 12 month results from the T1DAL study
Date
Authors
Language
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
Background Type 1 diabetes (T1D) results from autoimmune targeting of the pancreatic beta cells, likely mediated by effector memory T cells (Tems). CD2, a T cell surface protein highly expressed on Tems, is targeted by the fusion protein alefacept, depleting Tems and central memory T cells (Tcms). We hypothesized that alefacept would arrest autoimmunity and preserve residual beta cells in newly diagnosed T1D. Methods The T1DAL study is a phase II, double-blind, placebo-controlled trial that randomised T1D patients 12-35 years old within 100 days of diagnosis, 33 to alefacept (two 12-week courses of 15 mg IM per week, separated by a 12-week pause) and 16 to placebo, at 14 US sites. The primary endpoint was the change from baseline in mean 2-hour C-peptide area under the curve (AUC) at 12 months. This trial is registered with ClinicalTrials.gov, number NCT00965458. Findings The mean 2-hour C-peptide AUC at 12 months increased by 0.015 nmol/L (95% CI -0.080 to 0.110 nmol/L) in the alefacept group and decreased by 0.115 nmol/L (95% CI -0.278 to 0.047) in the placebo group, which was not significant (p=0.065). However, key secondary endpoints were met: the mean 4-hour C-peptide AUC was significantly higher (p=0.019), and daily insulin use and the rate of hypoglycemic events were significantly lower (p=0.02 and p<0.001, respectively) at 12 months in the alefacept vs. placebo groups. Safety and tolerability were comparable between groups. There was targeted depletion of Tems and Tcms, with sparing of naïve and regulatory T cells (Tregs). Interpretation At 12 months, alefacept preserved the 4-hour C-peptide AUC, lowered insulin use, and reduced hypoglycemic events, suggesting a signal of efficacy. Depletion of memory T cells with sparing of Tregs may be a useful strategy to preserve beta cell function in new-onset T1D.