miR-129-5p as a biomarker for pathology and cognitive decline in Alzheimer’s disease

dc.contributor.authorHan, Sang‑Won
dc.contributor.authorPyun, Jung‑Min
dc.contributor.authorBice, Paula J.
dc.contributor.authorBennett, David A.
dc.contributor.authorSaykin, Andrew J.
dc.contributor.authorKim, Sang Yun
dc.contributor.authorPark, Young Ho
dc.contributor.authorNho, Kwangsik
dc.contributor.departmentRadiology and Imaging Sciences, School of Medicine
dc.date.accessioned2024-04-18T10:08:58Z
dc.date.available2024-04-18T10:08:58Z
dc.date.issued2024-01-09
dc.description.abstractBackground: Alzheimer's dementia (AD) pathogenesis involves complex mechanisms, including microRNA (miRNA) dysregulation. Integrative network and machine learning analysis of miRNA can provide insights into AD pathology and prognostic/diagnostic biomarkers. Methods: We performed co-expression network analysis to identify network modules associated with AD, its neuropathology markers, and cognition using brain tissue miRNA profiles from the Religious Orders Study and Rush Memory and Aging Project (ROS/MAP) (N = 702) as a discovery dataset. We performed association analysis of hub miRNAs with AD, its neuropathology markers, and cognition. After selecting target genes of the hub miRNAs, we performed association analysis of the hub miRNAs with their target genes and then performed pathway-based enrichment analysis. For replication, we performed a consensus miRNA co-expression network analysis using the ROS/MAP dataset and an independent dataset (N = 16) from the Gene Expression Omnibus (GEO). Furthermore, we performed a machine learning approach to assess the performance of hub miRNAs for AD classification. Results: Network analysis identified a glucose metabolism pathway-enriched module (M3) as significantly associated with AD and cognition. Five hub miRNAs (miR-129-5p, miR-433, miR-1260, miR-200a, and miR-221) of M3 had significant associations with AD clinical and/or pathologic traits, with miR129-5p by far the strongest across all phenotypes. Gene-set enrichment analysis of target genes associated with their corresponding hub miRNAs identified significantly enriched biological pathways including ErbB, AMPK, MAPK, and mTOR signaling pathways. Consensus network analysis identified two AD-associated consensus network modules and two hub miRNAs (miR-129-5p and miR-221). Machine learning analysis showed that the AD classification performance (area under the curve (AUC) = 0.807) of age, sex, and APOE ε4 carrier status was significantly improved by 6.3% with inclusion of five AD-associated hub miRNAs. Conclusions: Integrative network and machine learning analysis identified miRNA signatures, especially miR-129-5p, as associated with AD, its neuropathology markers, and cognition, enhancing our understanding of AD pathogenesis and leading to better performance of AD classification as potential diagnostic/prognostic biomarkers.
dc.eprint.versionFinal published version
dc.identifier.citationHan SW, Pyun JM, Bice PJ, et al. miR-129-5p as a biomarker for pathology and cognitive decline in Alzheimer's disease. Alzheimers Res Ther. 2024;16(1):5. Published 2024 Jan 9. doi:10.1186/s13195-023-01366-8
dc.identifier.urihttps://hdl.handle.net/1805/40104
dc.language.isoen_US
dc.publisherSpringer Nature
dc.relation.isversionof10.1186/s13195-023-01366-8
dc.relation.journalAlzheimer's Research & Therapy
dc.rightsAttribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourcePMC
dc.subjectAlzheimer’s disease
dc.subjectBraak
dc.subjectCERAD
dc.subjectCognition
dc.subjectMachine learning
dc.subjectMicroRNA
dc.subjectModule
dc.subjectNetwork
dc.subjectmiRNA-129-5p
dc.titlemiR-129-5p as a biomarker for pathology and cognitive decline in Alzheimer’s disease
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
13195_2023_Article_1366.pdf
Size:
3.53 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: