miR-129-5p as a biomarker for pathology and cognitive decline in Alzheimer’s disease

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2024-01-09
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Springer Nature
Abstract

Background: Alzheimer's dementia (AD) pathogenesis involves complex mechanisms, including microRNA (miRNA) dysregulation. Integrative network and machine learning analysis of miRNA can provide insights into AD pathology and prognostic/diagnostic biomarkers.

Methods: We performed co-expression network analysis to identify network modules associated with AD, its neuropathology markers, and cognition using brain tissue miRNA profiles from the Religious Orders Study and Rush Memory and Aging Project (ROS/MAP) (N = 702) as a discovery dataset. We performed association analysis of hub miRNAs with AD, its neuropathology markers, and cognition. After selecting target genes of the hub miRNAs, we performed association analysis of the hub miRNAs with their target genes and then performed pathway-based enrichment analysis. For replication, we performed a consensus miRNA co-expression network analysis using the ROS/MAP dataset and an independent dataset (N = 16) from the Gene Expression Omnibus (GEO). Furthermore, we performed a machine learning approach to assess the performance of hub miRNAs for AD classification.

Results: Network analysis identified a glucose metabolism pathway-enriched module (M3) as significantly associated with AD and cognition. Five hub miRNAs (miR-129-5p, miR-433, miR-1260, miR-200a, and miR-221) of M3 had significant associations with AD clinical and/or pathologic traits, with miR129-5p by far the strongest across all phenotypes. Gene-set enrichment analysis of target genes associated with their corresponding hub miRNAs identified significantly enriched biological pathways including ErbB, AMPK, MAPK, and mTOR signaling pathways. Consensus network analysis identified two AD-associated consensus network modules and two hub miRNAs (miR-129-5p and miR-221). Machine learning analysis showed that the AD classification performance (area under the curve (AUC) = 0.807) of age, sex, and APOE ε4 carrier status was significantly improved by 6.3% with inclusion of five AD-associated hub miRNAs.

Conclusions: Integrative network and machine learning analysis identified miRNA signatures, especially miR-129-5p, as associated with AD, its neuropathology markers, and cognition, enhancing our understanding of AD pathogenesis and leading to better performance of AD classification as potential diagnostic/prognostic biomarkers.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Han SW, Pyun JM, Bice PJ, et al. miR-129-5p as a biomarker for pathology and cognitive decline in Alzheimer's disease. Alzheimers Res Ther. 2024;16(1):5. Published 2024 Jan 9. doi:10.1186/s13195-023-01366-8
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Alzheimer's Research & Therapy
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}