Functional connectomics in depression: insights into therapies

dc.contributor.authorChai, Ya
dc.contributor.authorSheline, Yvette I.
dc.contributor.authorOathes, Desmond J.
dc.contributor.authorBalderston, Nicholas L.
dc.contributor.authorRao, Hengyi
dc.contributor.authorYu, Meichen
dc.contributor.departmentRadiology and Imaging Sciences, School of Medicine
dc.date.accessioned2024-11-01T10:07:53Z
dc.date.available2024-11-01T10:07:53Z
dc.date.issued2023
dc.description.abstractDepression is a common mental disorder characterized by heterogeneous cognitive and behavioral symptoms. The emerging research paradigm of functional connectomics has provided a quantitative theoretical framework and analytic tools for parsing variations in the organization and function of brain networks in depression. In this review, we first discuss recent progress in depression-associated functional connectome variations. We then discuss treatment-specific brain network outcomes in depression and propose a hypothetical model highlighting the advantages and uniqueness of each treatment in relation to the modulation of specific brain network connectivity and symptoms of depression. Finally, we look to the future promise of combining multiple treatment types in clinical practice, using multisite datasets and multimodal neuroimaging approaches, and identifying biological depression subtypes.
dc.eprint.versionAuthor's manuscript
dc.identifier.citationChai Y, Sheline YI, Oathes DJ, Balderston NL, Rao H, Yu M. Functional connectomics in depression: insights into therapies. Trends Cogn Sci. 2023;27(9):814-832. doi:10.1016/j.tics.2023.05.006
dc.identifier.urihttps://hdl.handle.net/1805/44409
dc.language.isoen_US
dc.publisherElsevier
dc.relation.isversionof10.1016/j.tics.2023.05.006
dc.relation.journalTrends in Cognitive Sciences
dc.rightsPublisher Policy
dc.sourcePMC
dc.subjectAntidepressant treatments
dc.subjectConnectome
dc.subjectDepression
dc.subjectFunctional magnetic resonance imaging
dc.subjectResting-state networks
dc.subjectTherapy-specific network connectivity
dc.titleFunctional connectomics in depression: insights into therapies
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Chai2023Functional-AAM.pdf
Size:
986.78 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.04 KB
Format:
Item-specific license agreed upon to submission
Description: