Functional connectomics in depression: insights into therapies

Date
2023
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Elsevier
Abstract

Depression is a common mental disorder characterized by heterogeneous cognitive and behavioral symptoms. The emerging research paradigm of functional connectomics has provided a quantitative theoretical framework and analytic tools for parsing variations in the organization and function of brain networks in depression. In this review, we first discuss recent progress in depression-associated functional connectome variations. We then discuss treatment-specific brain network outcomes in depression and propose a hypothetical model highlighting the advantages and uniqueness of each treatment in relation to the modulation of specific brain network connectivity and symptoms of depression. Finally, we look to the future promise of combining multiple treatment types in clinical practice, using multisite datasets and multimodal neuroimaging approaches, and identifying biological depression subtypes.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Chai Y, Sheline YI, Oathes DJ, Balderston NL, Rao H, Yu M. Functional connectomics in depression: insights into therapies. Trends Cogn Sci. 2023;27(9):814-832. doi:10.1016/j.tics.2023.05.006
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Trends in Cognitive Sciences
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}