Measurement of nitrate and nitrite in biopsy-sized muscle samples using HPLC
Date
Language
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
Studies of rats have indicated that skeletal muscle plays a central role in whole-body nitrate ( NO−3 )/nitrite ( NO−2 )/nitric oxide (NO) metabolism. Extending these results to humans, however, is challenging due to the small size of needle biopsy samples. We therefore developed a method to precisely and accurately quantify NO−3 and NO−2 in biopsy-sized muscle samples. NO−3 and NO−2 were extracted from rat soleus samples using methanol combined with mechanical homogenization + ultrasound, bead beating, pulverization at liquid N2 temperature or pulverization + 0.5% Triton X-100. After centrifugation to remove proteins, NO−3 and NO−2 were measured using HPLC. Mechanical homogenization + ultrasound resulted in the lowest NO−3 content (62 ± 20 pmol/mg), with high variability [coefficient of variation (CV) >50%] across samples from the same muscle. The NO−2 / NO−3 ratio (0.019 ± 0.006) was also elevated, suggestive of NO−3 reduction during tissue processing. Bead beating or pulverization yielded lower NO−2 and slightly higher NO−3 levels, but reproducibility was still poor. Pulverization + 0.5% Triton X-100 provided the highest NO−3 content (124 ± 12 pmol/mg) and lowest NO−2 / NO−3 ratio (0.008 ± 0.001), with the least variability between duplicate samples (CV ~15%). These values are consistent with literature data from larger rat muscle samples analyzed using chemiluminescence. Samples were stable for at least 5 wk at -80°C, provided residual xanthine oxidoreductase activity was blocked using 0.1 mmol/l oxypurinol. We have developed a method capable of measuring NO−3 and NO−2 in <1 mg of muscle. This method should prove highly useful in investigating the role of skeletal muscle in NO−3 / NO−2 /NO metabolism in human health and disease. NEW & NOTEWORTHY Measurement of nitrate and especially nitrite in small, i.e., biopsy-sized, muscle samples is analytically challenging. We have developed a precise, accurate, and convenient method for doing so using an affordable commercial HPLC system.