B-line quantification: comparing learners novice to lung ultrasound assisted by machine artificial intelligence technology to expert review

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2021-06-30
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Springer
Abstract

Background: The goal of this study was to assess the ability of machine artificial intelligence (AI) to quantitatively assess lung ultrasound (LUS) B-line presence using images obtained by learners novice to LUS in patients with acute heart failure (AHF), compared to expert interpretation.

Methods: This was a prospective, multicenter observational study conducted at two urban academic institutions. Learners novice to LUS completed a 30-min training session on lung image acquisition which included lecture and hands-on patient scanning. Learners independently acquired images on patients with suspected AHF. Automatic B-line quantification was obtained offline after completion of the study. Machine AI counted the maximum number of B-lines visualized during a clip. The criterion standard for B-line counts was semi-quantitative analysis by a blinded point-of-care LUS expert reviewer. Image quality was blindly determined by an expert reviewer. A second expert reviewer blindly determined B-line counts and image quality. Intraclass correlation was used to determine agreement between machine AI and expert, and expert to expert.

Results: Fifty-one novice learners completed 87 scans on 29 patients. We analyzed data from 611 lung zones. The overall intraclass correlation for agreement between novice learner images post-processed with AI technology and expert review was 0.56 (confidence interval [CI] 0.51-0.62), and 0.82 (CI 0.73-0.91) between experts. Median image quality was 4 (on a 5-point scale), and correlation between experts for quality assessment was 0.65 (CI 0.48-0.82).

Conclusion: After a short training session, novice learners were able to obtain high-quality images. When the AI deep learning algorithm was applied to those images, it quantified B-lines with moderate-to-fair correlation as compared to semi-quantitative analysis by expert review. This data shows promise, but further development is needed before widespread clinical use.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Russell FM, Ehrman RR, Barton A, Sarmiento E, Ottenhoff JE, Nti BK. B-line quantification: comparing learners novice to lung ultrasound assisted by machine artificial intelligence technology to expert review. Ultrasound J. 2021;13(1):33. Published 2021 Jun 30. doi:10.1186/s13089-021-00234-6
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
The Ultrasound Journal
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}