- Browse by Title
Hazim El-Mounayri
Permanent URI for this collection
Hazim El-Mounayri has translated his research into practical technology that brings virtual training to tomorrow's manufacturing workforce. The Advanced Virtual Manufacturing Laboratory (AVML), developed with industrial partner Advanced Science and Automation Corp., provides virtual training and education on high-tech Computer Numerically Controlled (CNC) machines. It enables colleges to easily and inexpensively provide students with effective, safe, and highly accessible web-based training on advanced machining tools, equipment and processes.
AVML is a valuable tool for training the local workforce in advanced manufacturing. The system can be used by machine tool manufacturers to provide online training, reducing or eliminating the need for on-site, live training classes for their customers. The system can also be used for machining process verification and optimization. The AVML is so versatile it can run on desktop or laptop personal computers as well as on more sophisticated 3D and fully immersive systems.
The new technology opens the door for effective distance education in disciplines that were traditionally confined to live teaching, including engineering, physics, and science. It is expected to be a major tool for training of Indiana's workforce in advanced manufacturing and attracting talented students to engineering and technology directly from high schools.
Professor El-Mounaryi's use of technology to expand the reach of teaching and training in advanced manufacturing is another practical example of how IUPUI's faculty members are TRANSLATING their RESEARCH INTO PRACTICE.
Browse
Browsing Hazim El-Mounayri by Title
Results Per Page
Sort Options
Item Advanced Virtual Manufacturing Lab for Research, Training, & Education(Office of the Vice Chancellor for Research, 2010-04-09) El-Mounayri, HazimThe research formed a base for innovative technology that was used to develop a product on its way to commercialization. The new product provides effective and integrated tool for training and education in advanced manufacturing. It is based on sound e-learning pedagogy and highly effective and integrated virtual reality learning environment.Item AFM-Based Fabrication of Nanofluidic Device for Medical Application(Office of the Vice Chancellor for Research, 2014-04-11) Promyoo, Rapeepan; El-Mounayri, Hazim; Karingula, Varun KumarRecent developments in science and engineering have advanced the atomic manufacture of nanoscale structures, allowing for improved high-performance technologies. Among them, AFM-based nanomachining is considered a potential manufacturing tool for operations including machining, patterning, and assembling with in situ metrology and visualization. In this work, atomic force microscope (AFM) is employed in the fabrication of nanofluidic device for DNA stretching application. Nanofluidic channels with various depths and widths are fabricated using AFM indentation and scratching techniques. To introduce the fluid inside the nanochannels, microchannels are made on both sides of the nanochannels. Photolithography technique is used to fabricate microfluidic channels on silicon wafers. A 3D Molecular Dynamics (MD) model is used to guide the design and fabrication of nanodevices through nanoscratching. The correlation between the scratching conditions, including applied force, scratching depth, and distant between any two scratched grooves and the defect mechanism in the substrate/workpiece is investigated. The MD model allows proper process parameter identification resulting in more accurate nanochannel size.Item AFM-Based Nanofabrication: Modeling, Simulation, and Experimental Verification(Office of the Vice Chancellor for Research, 2013-04-05) Promyoo, Rapeepan; El-Mounayri, Hazim; Karingula, Varun Kumar; Varahramyan, KodyRecent developments in science and engineering have advanced the fabrication techniques for micro/ nanodevices. Among them, atomic force microscope (AFM) has already been used for nanomachining and fabrication of micro/nanodevices. In this paper, a computational model for AFM-based nanofabrication processes is being developed. Molecular Dynamics (MD) technique is used to model and simulate mechanical indentation and scratching at the nanoscale. The effects of AFM-tip radius and crystal orientation are investigated. The simulation is also used to study the effect of the AFM tip speed on the indentation force at the interface between the tip and the substrate/workpiece. The material deformation and indentation geometry are extracted from the final locations of atoms, which are displaced by the rigid indenter. Material properties including modulus of elasticity and hardness are estimated. It is found that properties vary significantly at the nanoscale. AFM is used to conduct actual nanoindentation and scratching, to validate the MD simulation. Qualitative agreement is found. Finally, AFM-based fabrication of nanochannels/nanofluidic devices is conducted using different applied forces, scratching length, and feed rate.Item AFM-Based Nanofabrication: Modeling, Simulation, and Experimental Verification(Office of the Vice Chancellor for Research, 2012-04-13) Promyoo, Rapeepan; El-Mounayri, Hazim; Varahramyan, KodyRecent developments in science and engineering have advanced the fabrication techniques for micro/nanodevices. Among them, atomic force microscope (AFM) has already been used for nanomachining and fabrication of micro/nanodevices. In this research, a multi-scale computational model for AFM-based nanofabrication processes is being developed. Molecular Dynamics (MD) technique was used to model and simulate mechanical indentation and scratching at the nanoscale. MD simulation represents itself as a viable alternative to the expensive traditional experimental approach, which can be used to study the effects of various indentation variables in a much more cost effective way. The effects of workpiece materials, AFM-tip materials, AFM-tip radius, as well as crystal ori entations were investigated. The simulation allows for prediction of the indentation forces at the interface between an indenter and a workpiece. Also, the MD simulation was used to study the effects of speed on the indentation force. The material deformation and indentation geometry are extracted based on the final locations of atoms, which are displaced by the rigid indenter. Material properties including modulus of elasticity and friction coefficient are presented. AFM was used to conduct actual indentation and scratching at the nanoscale, and provide measurements to validate the predictions from the MD simulation. Qualitative agreement was found between the simulation and actual AFM-based nanomachining.Item Assessment of STEM e-Learning in an Immersive Virtual Reality (VR) Environment(ASEE, 2018) Rogers, Christian B.; El-Mounayri, Hazim; Wasfy, Tamer; Satterwhite, Jesse; Computer and Information Science, School of ScienceThis paper shows the early research findings of utilizing a virtual reality environment as an educational tool for the operation of a computerized numerical control (CNC) milling machine. Based off of previous work, the Advanced Virtual Machining Lab (AVML), this project features an environment in which a virtual CNC machine is fully operable, designed to allow STEM students and training professionals to learn the use of the CNC machine without the need to be in a physical lab. Users operate in the virtual environment using an immersive virtual reality headset (i.e. Oculus Rift) and standard input devices (i.e. mouse and keyboard), both of which combined make for easy movement and realistic visuals. On-screen tutorials allow users to learn about what they need to do to operate the machine without the need for outside instruction. While designing and perfecting this environment has been the primary focus of this project thus far, the research goal is to test the ease of use and the pedagogical effectiveness of the immersive technology as it relates to education in STEM fields. Initial usability studies for this environment featured students from a CAD/CAM-Theory and Advanced Applications (ME 54600) course at a Midwestern urban institution. Results from the study were tabulated with a survey using a four-point Likert scale and several open-ended questions. Findings from the survey indicated that the majority of users found the environment realistic and easy to navigate, in addition to finding the immersive technology to be beneficial. Many also indicated that they felt comfortable navigating the environment without the need for additional assistance from the survey proctors. Full details on the usability study, including data and discussion, can be found in this paper. The general consensus from the study was that, while some features needed refinement, the immersive environment helped them learn about the operation of a CNC machine. An additional comparative study will be undertaken to evaluate pedagogical effectiveness.Item Assessment of STEM e-Learning in an Immersive Virtual Reality (VR) Environment(American Society for Engineering Education, 2016-06) El-Mounayri, Hazim; Rogers, Christian; Fernandez, Eugenia; Satterwhite, Jesse Connor; Department of Engineering Technology, School of Engineering and TechnologyThis paper shows the early research findings of utilizing a virtual reality environment as an educational tool for the operation of a computerized numerical control (CNC) milling machine. Based off of a previous work, the Advanced Virtual Machining Lab (AVML), this project features a virtual environment in which a virtual CNC machine is fully operable, designed to allow STEM students and training professionals to learn the use of the CNC machine without the need to be in a physical lab. Users operate in the virtual environment using an immersive virtual reality headset (i.e. Oculus Rift) and standard input devices (i.e. mouse and keyboard), both of which combined make for easy movement and realistic visuals. On-screen tutorials allow users to learn about what they need to do to operate the machine without the need for outside instruction. While designing and perfecting this environment has been the primary focus of this project thus far, the research goal is to test the ease of use and the pedagogical effectiveness of the immersive technology as it relates to education in STEM fields. Initial usability studies for this environment featured students from the graduate level CAD/CAM-Theory and Advanced Applications (ME 54600) course at IUPUI. Results from the study were tabulated with a survey using a four-point Likert scale and several open-ended questions. Findings from the survey indicate that the majority of users found the environment realistic and easy to navigate, in addition to finding the immersive technology to be beneficial. Many also indicated that they felt comfortable navigating the environment without the need for additional assistance from the survey proctors. Full details on the first usability study, including data and discussion, can be found in this paper. The general consensus from the study was that, while some features needed refinement, the immersive environment helped them learn about the operation of a CNC machine. Additional usability studies will need to be undergone to refine said features before beginning the final study, in which students learning from the immersive virtual environment will be tested against students learning from traditional methods. Details on this last study will be discussed in the final paper, which will also discuss the methods used for preparing the environment, full results and detailed discussion on each of the usability studies, and conclusions on the usability and educational effectiveness of the immersive virtual reality technology in STEM education.Item Correlation Between Process Parameters and Mechanical Properties in Parts Printed by the Fused Deposition Modeling Process(Springer, 2019) Attoye, Samuel; Malekipour, Ehsan; El-Mounayri, Hazim; Mechanical and Energy Engineering, School of Engineering and TechnologyFused deposition modeling (FDM) represents one of the most common techniques for rapid prototyping and industrial additive manufacturing (AM). Optimizing the process parameters which significantly impact the mechanical properties is critical to achieving the ultimate final part quality sought by industry today. This work investigates the effect of different process parameters including nozzle temperature, printing speed, and print orientation on Young’s modulus, yield strength, and ultimate strength of the final part for two types of filament, namely, Poly Lactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS). Design of Experiments (DOE) is used to determine optimized values of the process parameters for each type of filaments; also, a comparison is made between the mechanical properties of the parts fabricated with the two materials. The results show that Y-axis orientation presents the best mechanical properties in PLA while X-axis orientation is the best orientation to print parts with ABS.Item Defects, Process Parameters and Signatures for Online Monitoring and Control in Powder-Based Additive Manufacturing(Springer, 2018) Malekipour, Ehsan; El-Mounayri, Hazim; Mechanical and Energy Engineering, School of Engineering and TechnologyAdditive Manufacturing (AM) is a process that is based on manufacturing parts layer by layer in order to avoid any geometric limitation in terms of creating the desired design. In the early stages of AM development, the goal was just creating some prototypes to decrease the time of manufacturing assessment. But with metal-based AM, it is now possible to produce end-use parts. In powder-based AM, a designed part can be produced directly from the STL file (Standard Tessellation Language/ stereolithography) layer by layer by exerting a laser beam on a layer of powder with thickness between 20 μm and 100 μm to create a section of the part. The Achilles’ heel of this process is generation of some defects, which weaken the mechanical properties and in some cases, these defects may even lead to part failure under manufacturing. This prevents metal-based AM technology from spreading widely while limiting the repeatability and precision of the process. Online monitoring (OM) and intelligent control, which has been investigated prevalently in contemporary research, presents a feasible solution to the aformentioned issues, insofar as it monitors the generated defects during the process and eliminates them in real-time. In this regard, this paper reveals the most frequent and traceable defects which significantly affect quality matrices of the produced part in powder-based AM, predominately focusing on the Selective Laser Sintering (SLS) process. These defects are classified into “Geometry and Dimensions,” “Surface Quality (Finishing),” “Microstructure” and the defects leading to “Weak Mechanical Properties.” In addition, we introduce and classify the most important parameters, which can be monitored and controlled to avoid those defects. Furthermore, these parameters may be employed in some error handling strategies to remove the generated defects. We also introduce some signatures that can be monitored for adjusting the parameters into their optimum value instead of monitoring the defects directly.Item Design Optimization of Injection Molds with Conformal Cooling for Additive Manufacturing(Office of the Vice Chancellor for Research, 2015-04-17) Wu, Tong; Jahan, Suchana A.; Kumaar, Praveen; Tovar, Andres; El-Mounayri, Hazim; Zhang, Yi; Zhang, Jing; Acheson, Doug; Nalim, M. RaziAbstract This is a framework for optimizing additive manufacturing of plastic injection molds. The proposed system consists of three modules, namely process and material modeling, multi-scale topology optimization, and experimental testing, calibration and validation. Advanced numerical simulation is implemented for a typical die with conformal cooling channels to predict cycle time, part quality and tooling life. A thermo-mechanical topology optimization algorithm is being developed to minimize the die weight and enhance its thermal performance. The technique is implemented for simple shapes for validation before it is applied to dies with conformal cooling in future work. A method for designing a die with porous material which can be produced in additive manufacturing is developed. Also a comprehensive set of systemic design rules are developed and to be integrated with CAD modeling to automate the process of obtaining viable plastic injection dies with conformal cooling channels. Finally, material modeling using simulation as well as design of experiments is underway for obtaining the material properties and their variations.Item Design Optimization of Plastic Injection Tooling for Additive Manufacturing(Elsevier, 2017) Wu, Tong; Jahan, Suchana A.; Zhang, Yi; Zhang, Jing; El-Mounayri, Hazim; Tovar, Andres; Mechanical Engineering, School of Engineering and TechnologyThis work presents a systematic and practical finite element based design optimization approach for the injection tooling adaptive to additive manufacturing (AM) technology using stereo-lithography (SLA) and powder bed fusion (PBF). First a thermomechanical optimization of conformal cooling is implemented to obtain the optimal parameters associated with conformal cooling design. Then, a multiscale thermomechanical topology optimization is implemented to obtain a lightweight lattice injection tooling without compromising the thermal and mechanical performance. The design approach is implemented to optimize a real design mold and the final optimal design is prototyped in SLA and the manufacturability in PBF has been discussed.