Design Optimization of Plastic Injection Tooling for Additive Manufacturing

Date
2017
Language
English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Elsevier
Abstract

This work presents a systematic and practical finite element based design optimization approach for the injection tooling adaptive to additive manufacturing (AM) technology using stereo-lithography (SLA) and powder bed fusion (PBF). First a thermomechanical optimization of conformal cooling is implemented to obtain the optimal parameters associated with conformal cooling design. Then, a multiscale thermomechanical topology optimization is implemented to obtain a lightweight lattice injection tooling without compromising the thermal and mechanical performance. The design approach is implemented to optimize a real design mold and the final optimal design is prototyped in SLA and the manufacturability in PBF has been discussed.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Wu, T., Jahan, S. A., Zhang, Y., Zhang, J., Elmounayri, H., & Tovar, A. (2017). Design Optimization of Plastic Injection Tooling for Additive Manufacturing. Procedia Manufacturing, 10, 923–934. https://doi.org/10.1016/j.promfg.2017.07.082
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Procedia Manufacturing
Source
Author
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}