- Browse by Subject
Browsing by Subject "inflammation"
Now showing 1 - 10 of 59
Results Per Page
Sort Options
Item Adaptive NK cells in people exposed to Plasmodium falciparum correlate with protection from malaria(Rockefeller University Press, 2019-04-12) Hart, Geoffrey T.; Tran, Tuan M.; Theorell, Jakob; Schlums, Heinrich; Arora, Gunjan; Rajagopalan, Sumati; Sangala, A. D. Jules; Welsh, Kerry J.; Traore, Boubacar; Pierce, Susan K.; Crompton, Peter D.; Bryceson, Yenan T.; Long, Eric O.; Medicine, School of MedicineHow antibodies naturally acquired during Plasmodium falciparum infection provide clinical immunity to blood-stage malaria is unclear. We studied the function of natural killer (NK) cells in people living in a malaria-endemic region of Mali. Multi-parameter flow cytometry revealed a high proportion of adaptive NK cells, which are defined by the loss of transcription factor PLZF and Fc receptor γ-chain. Adaptive NK cells dominated antibody-dependent cellular cytotoxicity responses, and their frequency within total NK cells correlated with lower parasitemia and resistance to malaria. P. falciparum–infected RBCs induced NK cell degranulation after addition of plasma from malaria-resistant individuals. Malaria-susceptible subjects with the largest increase in PLZF-negative NK cells during the transmission season had improved odds of resistance during the subsequent season. Thus, antibody-dependent lysis of P. falciparum–infected RBCs by NK cells may be a mechanism of acquired immunity to malaria. Consideration of antibody-dependent NK cell responses to P. falciparum antigens is therefore warranted in the design of malaria vaccines.Item Aging: Cancer – an unlikely couple(Impact Journals, 2017-09-20) Hartley, Antja-Voy; Martin, Matthew; Lu, Tao; Pharmacology and Toxicology, School of MedicineItem Angiogenic gene signature in human pancreatic cancer correlates with TGF-beta and inflammatory transcriptomes(Impact Journals, LLC, 2016-01-05) Craven, Kelly E.; Gore, Jesse; Wilson, Julie L.; Korc, Murray; Department of Medicine, IU School of MedicinePancreatic ductal adenocarcinomas (PDACs) are hypovascular, but overexpress pro-angiogenic factors and exhibit regions of microvasculature. Using RNA-seq data from The Cancer Genome Atlas (TCGA), we previously reported that ~12% of PDACs have an angiogenesis gene signature with increased expression of multiple pro-angiogenic genes. By analyzing the recently expanded TCGA dataset, we now report that this signature is present in ~35% of PDACs but that it is mostly distinct from an angiogenesis signature present in pancreatic neuroendocrine tumors (PNETs). These PDACs exhibit a transcriptome that reflects active TGF-β signaling, and up-regulation of several pro-inflammatory genes, and many members of JAK signaling pathways. Moreover, expression of SMAD4 and HDAC9 correlates with endothelial cell abundance in PDAC tissues. Concomitantly targeting the TGF-β type I receptor (TβRI) kinase with SB505124 and JAK1-2 with ruxolitinib suppresses JAK1 phosphorylation and blocks proliferative cross-talk between human pancreatic cancer cells (PCCs) and human endothelial cells (ECs), and these anti-proliferative effects were mimicked by JAK1 silencing in ECs. By contrast, either inhibitor alone does not suppress their enhanced proliferation in 3D co-cultures. These findings suggest that targeting both TGF-β and JAK1 signaling could be explored therapeutically in the 35% of PDAC patients whose cancers exhibit an angiogenesis gene signature.Item Anti-integrin therapy for retinovascular diseases(Taylor & Francis, 2020) Bhatwadekar, Ashay D.; Kansara, Viral; Luo, Qianyi; Ciulla, Thomas; Ophthalmology, School of MedicineIntegrins are a family of multi-functional cell-adhesion molecules, heterodimeric receptors that connect extracellular matrix (ECM) to actin cytoskeleton in the cell cortex, thus regulating cellular adhesion, migration, proliferation, invasion, survival, and apoptosis. Consequently, integrins play a role in inflammation, angiogenesis and fibrosis.Item Bifidobacterium longum Subspecies infantis (B. infantis) in Pediatric Nutrition: Current State of Knowledge(MDPI, 2020-05-28) Chichlowski, Maciej; Shah, Neil; Wampler, Jennifer L.; Wu, Steven S.; Vanderhoof, Jon A.; Pediatrics, School of MedicineSince originally isolated in 1899, the genus Bifidobacterium has been demonstrated to predominate in the gut microbiota of breastfed infants and to benefit the host by accelerating maturation of the immune response, balancing the immune system to suppress inflammation, improving intestinal barrier function, and increasing acetate production. In particular, Bifidobacterium longum subspecies infantis (B. infantis) is well adapted to the infant gut and has co-evolved with the mother-infant dyad and gut microbiome, in part due to its ability to consume complex carbohydrates found in human milk. B. infantis and its human host have a symbiotic relationship that protects the preterm or term neonate and nourishes a healthy gut microbiota prior to weaning. To provide benefits associated with B. infantis to all infants, a number of commercialized strains have been developed over the past decades. As new ingredients become available, safety and suitability must be assessed in preclinical and clinical studies. Consideration of the full clinical evidence for B. infantis use in pediatric nutrition is critical to better understand its potential impacts on infant health and development. Herein we summarize the recent clinical studies utilizing select strains of commercialized B. infantis.Item CHOP links endoplasmic reticulum stress to NF-κB activation in the pathogenesis of nonalcoholic steatohepatitis(2015) Willy, Jeffrey A.; Young, Sara K.; Stevens, James L.; Masuoka, Howard C.; Wek, Ronald C.; Department of Biochemistry and Molecular Biology, IU School of MedicineFree fatty acid induction of inflammation and cell death is an important feature of nonalcoholic steatohepatitis (NASH) and has been associated with disruption of the endoplasmic reticulum and activation of the Unfolded Protein Response (UPR). Following chronic UPR activation, the transcription factor CHOP (GADD153/DDIT3) triggers cell death; however, the mechanisms linking the UPR or CHOP to hepatoceullular injury and inflammation in the pathogenesis of NASH are not well understood. Using HepG2 and primary human hepatocytes, we found that CHOP induces cell death and inflammatory responses following saturated free fatty acid exposure by activating NF-κB through a pathway involving IRAK2 expression, resulting in secretion of cytokines IL-8 and TNFα directly from hepatocytes. TNFα facilitates hepatocyte death upon exposure to saturated free fatty acids and secretion of both IL-8 and TNFα contribute to inflammation. Interestingly, CHOP/NF-κB signaling is not conserved in primary rodent hepatocytes. Our studies suggest that CHOP plays a vital role in the pathophysiology of NASH through induction of secreted factors that trigger inflammation and hepatocellular death via a signaling pathway specific to human hepatocytes.Item Development, validation and implementation of radio-HPLC methods for the P2X7-receptor-targeted [11C]GSK1482160 radiopharmaceutical(Elsevier, 2018-12) Wissman, Carmen L.; Wang, Min; Gao, Mingzhang; Zheng, Qi-Huang; Green, Mark A.; Radiology and Imaging Sciences, School of MedicineA radio-analytical RP-HPLC method was developed and validated to support production of the P2X7-receptor-targeted [11C]GSK1482160 radiopharmaceutical. Method validation included characterization of retention times, peak shapes, linearity, accuracy, precision, selectivity, limits of detection and quantitation (UV signal), radiochemical stability, as well as analytical method range and robustness. The validated radio-HPLC method is suitable for the definition of [11C]GSK1482160 radiochemical identity, radiochemical purity, as well as molar activity, and is being employed in support of human studies with [11C]GSK1482160.Item Diabetes reduces bone marrow and circulating porcine endothelial progenitor cells, an effect ameliorated by atorvastatin and independent of cholesterol(Wiley, 2009-01) Mohler III, Emile R.; Shi, Yuquan; Moore, Jonni; Bantly, Andrew; Hamamdzic, Damir; Yoder, Mervin; Rader, Daniel J.; Putt, Mary; Zhang, Lifeng; Parmacek, Michael; Wilensky, Robert L.; Pediatrics, School of MedicineBone marrow derived endothelial progenitor cells (EPCs) are early precursors of mature endothelial cells which replenish aging and damaged endothelial cells. The authors studied a diabetic swine model to determine if induction of DM adversely affects either bone marrow or circulating EPCs and whether a HMG-CoA reductase inhibitor (statin) improves development and recruitment of EPCs in the absence of cholesterol lowering. Streptozotocin was administered to Yorkshire pigs to induce DM. One month after induction, diabetic pigs were treated with atorvastatin (statin, n = 10), ezetimibe (n = 10) or untreated (n = 10) and evaluated for number of bone marrow and circulating EPCs and femoral artery endothelial function. There was no effect of either medication on cholesterol level. One month after induction of DM prior to administration of drugs, the number of bone marrow and circulating EPCs significantly decreased (P < 0.0001) compared to baseline. Three months after DM induction, the mean proportion of circulating EPCs significantly increased in the atorvastatin group, but not in the control or ezetimibe groups. The control group showed progressive reduction in percentage of flow mediated vasodilatation (no dilatation at 3 months) whereas the atorvastatin group and ezetimibe exhibited vasodilatation, 6% and 4% respectively. DM results in significant impairment of bone marrow and circulating EPCs as well as endothelial function. The effect is ameliorated, in part, by atorvastatin independent of its cholesterol lowering effect. These data suggest a model wherein accelerated atherosclerosis seen with DM may, in part, result from reduction in EPCs which may be ameliorated by treatment with a statin.Item Disease Progression-Dependent Effects of TREM2 Deficiency in a Mouse Model of Alzheimer's Disease(2017-01) Jay, Taylor R.; Hirsch, Anna M.; Broihier, Margaret L.; Miller, Crystal M.; Neilson, Lee E.; Ransohoff, Richard M.; Lamb, Bruce T.; Landreth, Gary E.; Department of Medical and Molecular Genetics, School of MedicineNeuroinflammation is an important contributor to Alzheimer's disease (AD) pathogenesis, as underscored by the recent identification of immune-related genetic risk factors for AD, including coding variants in the gene TREM2 (triggering receptor expressed on myeloid cells 2). Understanding TREM2 function promises to provide important insights into how neuroinflammation contributes to AD pathology. However, studies so far have produced seemingly conflicting results, with reports that amyloid pathology can be both decreased and increased in TREM2-deficient AD mouse models. In this study, we unify these previous findings by demonstrating that TREM2 deficiency ameliorates amyloid pathology early, but exacerbates it late in disease progression in the APPPS1–21 mouse model of AD. We also demonstrate that TREM2 deficiency decreases plaque-associated myeloid cell accumulation by reducing cell proliferation, specifically late in pathology. In addition, TREM2 deficiency reduces myeloid cell internalization of amyloid throughout pathology, but decreases inflammation-related gene transcript levels selectively late in disease progression. Together, these results suggest that TREM2 plays distinct functional roles at different stages in AD pathology.Item DNA damage mediates changes in neuronal sensitivity induced by the inflammatory mediators, MCP-1 and LPS, and can be reversed by enhancing the DNA repair function of APE1(Elsevier, 2017) Fehrenbacher, Jill C.; Guo, Chunlu; Kelley, Mark R.; Vasko, Michael R.; Pharmacology and Toxicology, School of MedicineAlthough inflammation-induced peripheral sensitization oftentimes resolves as an injury heals, this sensitization can be pathologically maintained and contribute to chronic inflammatory pain. Numerous inflammatory mediators increase the production of reactive oxygen (ROS) and nitrogen species (RNS) during inflammation and in animal models of chronic neuropathic pain. Our previous studies demonstrate that ROS/RNS and subsequent DNA damage mediate changes in neuronal sensitivity induced by anticancer drugs and by ionizing radiation in sensory neurons, thus we investigated whether inflammation and inflammatory mediators also could cause DNA damage in sensory neurons and whether that DNA damage alters neuronal sensitivity. DNA damage was assessed by pH2A.X expression and the release of the neuropeptide, calcitonin gene-related peptide (CGRP), was measured as an index of neuronal sensitivity. Peripheral inflammation or exposure of cultured sensory neurons to the inflammatory mediators, LPS and MCP-1, elicited DNA damage. Moreover, exposure of sensory neuronal cultures to LPS or MCP-1 resulted in changes in the stimulated release of CGRP, without altering resting release or CGRP content. Genetically enhancing the expression of the DNA repair enzyme, apurinic/apyrimidinic endonuclease (APE1) or treatment with a small-molecule modulator of APE1 DNA repair activity, both which enhance DNA repair, attenuated DNA damage and the changes in neuronal sensitivity elicited by LPS or MCP-1. In conclusion, our studies demonstrate that inflammation or exposure to inflammatory mediators elicits DNA damage in sensory neurons. By enhancing DNA repair, we demonstrate that this DNA damage mediates the alteration of neuronal function induced by inflammatory mediators in peptidergic sensory neurons.