- Browse by Subject
Browsing by Subject "Root Canal Therapy"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
Item Bactericidal Efficacy of EdgePRO Er,Cr:YSGG Laser-Activated Irrigation Against a Mature Endodontic Multispecies Biofilm Using an in vitro Infected Tooth Model(2024) Patterson, Samuel B.; Spolnik, Kenneth J.; Gregory, Richard; Ehrlich, Ygal; Movila, AlexandruIntroduction: Treatment goals of non-surgical root canal therapy (nsRCT) include the removal of all organic tissue material, bacterial biofilm and their by-products, and debris materials, in order to disinfect the canal system to a level compatible with healing and to further prevent infection. Standard chemo-mechanical protocols have several well-documented shortcomings and subsequent areas for improvement regarding their disinfection abilities. In recent years, emerging laser technology and its application in root canal therapy has been gaining popularity as a safe and promising tool for advancing endodontic treatment. The newest FDA-approved laser for endodontic application is the EdgePRO Erbium,Chromium-doped:Yttrium-Scandium-Gallium-Garnet (Er,Cr:YSGG) infrared laser operating at a 2780 nm wavelength. Previous in vitro studies using Er,Cr:YSGG lasers have demonstrated their ability to enhanced canal debridement, cleaning, smear layer removal, and bacterial disinfection. Additionally, a few in vivo trails have been completed using this laser type as an adjunct in RCT procedures, which have yielded safe and highly successful results in the clinical setting. However, research specifically using the EdgePro device as well as a standardized protocol for optimal clinical usage of the laser is lacking. Objectives: The aim of this study was to evaluate the bactericidal and biofilm dissolution effects of laser-activated irrigation using the EdgePro laser against a mature multispecies biofilm in an infected tooth model and to assess the potential increased disinfection and cleaning ability compared to a standard needle irrigation protocol. Materials and Methods: Single rooted teeth (n=36) were decoronated to a standardized length of 16mm. The root canals were endodontically prepared using a standard irrigation, hand-filing, and rotary protocol to a final size of ISO 25.06 while maintaining a fully patent apical foramen. An irrigation solution reservoir was created in the coronal 4 mm of the canal space. Sterile specimens were inoculated with multispecies bacterial sample containing E. faecalis. The mixed bacteria was grown anaerobically for 10 days to form a mature biofilm using a previously established protocol. The teeth were divided into a negative control group (saline rinse, n=12), positive control group (standard needle irrigation – SNI, n=12), and an experimental group (laser-assisted treatment protocol, n=12). The positive control and experimental laser groups utilized the same irrigation solutions of 2 mL 17% EDTA followed by 5 mL 3% NaOCl using a standard 27-gauge side-vented irrigation needle placed as far apically as possible without binding. The experimental group underwent additional laser activation using laser tip #2 (350 m diameter) and settings of: 15 mJ, 0.75 W, 50 Hz, 0% air, and 0% water spray (Mid-Root Solutions 1 preset). The laser tip was inserted halfway into the irrigation filled canals (8 mm from orifice and apex) and fired upon withdrawal at a speed of 0.8 mm/sec, which comprised a single lasing cycle of 10 seconds. Three lasing cycles were completed with EDTA first followed by NaOCl, for a total of six lasing cycles with 60 seconds of irradiation time per tooth. A final rinse of sterile saline was used in all tooth samples prior to bacterial sample collection via Versa-brushes and sterile paper points. The samples were transferred to a laboratory setting where they underwent ultrasonic agitation, serial dilution, spiral plating on blood-agar, and two days of anaerobic incubation for assessment of bacterial growth. Colony forming units (CFUs/mL) were counted as a means of quantitative analysis. Results: The negative control group yielded the highest level of bacterial growth with an average of 934,771 CFUs/mL. The positive control group displayed a statistically significant lower amount of bacterial growth with an average of 4,698 CFUs/mL and yielded 1 sample with no bacterial growth. The experimental laser group had statistically significant lower bacterial growth present compared to both the positive and negative control groups and produced all negative bacterial samples with none of the 12 agar plates demonstrating CFU growth and averaged 0 CFUs/mL.. Conclusion: Within the scope of this study, laser-activated irrigation (LAI) using the EdgePro Er,Cr:YSGG laser was capable of producing no detectable bacterial samples in an in vitro infected tooth model. EdgePro LAI displayed statistically significant superior cleaning and disinfection of infected canal space compared to teeth treated with standard needle irrigation alone. The EdgePro laser system indeed shows promise as an adjunctive tool in clinical root canal treatment procedures. Further investigation is warranted using similar protocols in teeth with more complicated anatomy and with supplemental methods for analyzing bactericidal potential.Item Bimix antimicrobial scaffolds for regenerative endodontics(Elsevier, 2014-11) Palasuk, Jadesada; Kamocki, Krzysztof; Hippenmeyer, Lauren; Platt, Jeffrey A.; Spolnik, Kenneth J.; Gregory, Richard L.; Bottino, Marco C.; Department of Restorative Dentistry, IU School of DentistryINTRODUCTION: Eliminating and/or inhibiting bacterial growth within the root canal system has been shown to play a key role in the regenerative outcome. The aim of this study was to synthesize and determine in vitro both the antimicrobial effectiveness and cytocompatibility of bimix antibiotic-containing polydioxanone-based polymer scaffolds. METHODS: Antibiotic-containing (metronidazole [MET] and ciprofloxacin [CIP]) polymer solutions (distinct antibiotic weight ratios) were spun into fibers as a potential mimic to the double antibiotic paste (DAP, a MET/CIP mixture). Fiber morphology, chemical characteristics, and tensile strength were evaluated by scanning electron microscopy, Fourier transform infrared spectroscopy, and tensile testing, respectively. Antimicrobial efficacy was tested over time (aliquot collection) against Enterococcus faecalis (Ef), Porphyromonas gingivalis (Pg), and Fusobacterium nucleatum (Fn). Similarly, cytotoxicity was evaluated in human dental pulp stem cells. Data were statistically analyzed (P < .05). RESULTS: Scanning electron microscopy and Fourier transform infrared spectroscopy confirmed that electrospinning was able to produce antibiotic-containing fibers with a diameter mostly in the nanoscale. The tensile strength of 1:1MET/CIP scaffolds was significantly (P < .05) higher than pure polydioxanone (control). Meanwhile, all other groups presented similar strength as the control. Aliquots obtained from antibiotic-containing scaffolds inhibited the growth of Ef, Pg, and Fn, except pure MET, which did not show an inhibitory action toward Pg or Fn. Antibiotic-containing aliquots promoted slight human dental pulp stem cell viability reduction, but none of them were considered to be cytotoxic. CONCLUSIONS: Our data suggest that the incorporation of multiple antibiotics within a nanofibrous scaffold holds great potential toward the development of a drug delivery system for regenerative endodontics.Item Development of a Double Antibiotic Electrospun scaffold for Root Canal Disinfection(2015) Kutanovski, Christopher D.; Bottino, Marco C.; Spolnik, Kenneth J.; Ehrlich, Ygal; Gregory, Richard L.; Zunt, Susan L.Objective: This study synthesized electrospun polymer-based scaffolds containing ciprofloxacin (CIP) and doxycycline (DOX), as a scaffold mimic of Double Antibiotic Paste (DAP) and determined, in vitro, its mechanical properties, chemical composition, and antimicrobial effectiveness against multiple endodontic bacterium. Methods: Polydioxanone sutures (PDS) were dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol (HFP), mixed with CIP/DOX (i.e., 50%), and electrospun under optimized conditions into fibrous scaffolds. Tensile testing was used to evaluate the mechanical properties. Antimicrobial efficacy was determined over time using aliquots collected at 1, 4, 7, 14 day and agar diffusion assays. Two-Way Anova. Significance P < 0.05. Results: Tensile strength (MPa) of the CIP/DOX scaffold did not show significant difference from the control (pure PDS). Elongation at break (%) did show a significant difference between CIP/DOX scaffolds and the control group. Young’s modulus of elasticity (MPa) showed a significant difference between CIP/DOX scaffolds and the control. CIP-containing scaffolds did not inhibit Gram-negative (F. nucleatum and P. gingivalis) bacteria as effectively when compared to Gram-positive bacteria (E. faecalis and S. gordina). DOX-containing scaffolds showed less inhibition against Gram-positive (E. faecalis and S. gordina) bacteria then Gram-negative bacteria (F. nucleatum and P. gingivalis). In combination, CIP/DOX scaffolds showed significant inhibition against G(-) and G(+) bacteria. Conclusion: Electrospun double antibiotic scaffold demonstrated increased antimicrobial efficacy proving the potential for future clinical use to disinfect the RCS in permanent immature necrotic teeth to aid in regenerative treatment and or in persistent infections.Item Differentiation and Activity of Murine Derived Stromal Osteoblasts After Electromagnetic Wave Stimulation(2022) Wu, Jennifer L.; Spolnik, Kenneth; Bruzzaniti, Angela; Ehrlich, Ygal; Warner, NedIntroduction: Elimination of bacteria and active infection within an infected root canal system is one of the primary objectives of nonsurgical root canal treatment. One of the measures of successful root canal treatment is subsequent bone healing of periapical lesions caused by previous infection. A previous study by Yumoto et al. showed that electromagnetic wave stimulation can increase proliferation of osteoblastic cells with no cytotoxicity, and it can also up-regulate growth factors such as vascular endothelial growth factor and platelet-derived growth factor.18 They also showed increased proliferation of an immortalized osteoblastic MC3T3-E1 cell line 3 days following electromagnetic stimulation (EMS).18 Previously, Pauly et al. found increased alkaline phosphatase (ALP) activity with 10 mA EMS application to primary murine calvaria-derived osteoblastic cells with 5 pulses at 1 second per pulse, but no significant differences were found for MTS proliferation nor mineral deposition compared to a negative control group.82 Optimization of the different variables including post-treatment incubation time, current delivery, and number of pulses per treatment may be necessary to improve osteogenic activity. The use of mesenchymal stem cells from murine bone marrow may also offer a physiologically relevant model for osteoblastic regeneration of periapical lesions. Objectives: The goal of this study was to investigate and optimize the effects of electromagnetic wave stimulation (EMS) on murine bone marrow mesenchymal stem cells (MSCs) by evaluating the proliferation and differentiation of the cells after exposure to different EMS treatment regimens. Materials and Methods: 5 x104 stromal osteoblasts (SOBs) were cultured in 24-well plates in α-MEM containing 10% fetal bovine serum. Cells were then subjected to pulsed EMS treatments of 1 mA, 10 mA, and 50 mA. EMS was generated using an electromagnetic apical treatment (EMAT) device created by J. Morita MFG Corp. Proliferation was assessed via MTS assay 1 days after treatment. For osteogenic differentiation, ascorbic acid and β-glycerol phosphate were added to the culture media, and SOBs were cultured for 14 days. Afterwards, alkaline phosphatase (ALP) activity and Alizarin-red S mineral deposition were quantified as measures of osteoblast activity. Cells grown in osteogenic media without EMS treatment served as the negative control. Results: Although MSC proliferation was unaffected by different EMS treatment regimens, 50 mA EMS resulted in a decrease in ALP activity and mineral deposition by osteoblasts. Conclusions: Our findings suggest bone healing by EMS may involve a different cellular mechanism, that is not reproduced in vitro in our studies. Utilizing different amperage and EMS regimens may improve osteogenic differentiation.Item Effectiveness of ozonated water irrigation against an established Enterococcus faecalis biofilm in root canal treated teeth in vitro(2020) Broady, Adam B.; Spolnik, Kenneth J.; Duarte, Simone; Gossweiler, Ana; Bringas, Josef S.; Ehrlich, YgalIntroduction: One of the main objectives of endodontic therapy is to reduce microbes and remove inflamed pulpal tissue within the root canal system (RCS). This is accomplished through chemomechanical debridement of the RCS using hand and rotary instrumentation along with an antimicrobial irrigant. Today, the most commonly used irrigant is sodium hypochlorite (NaOCl), often at concentrations toxic to human cells. The use of ozone as an endodontic irrigant is a novel technique that has been proven to be antimicrobial against several microorganisms. However, independent research is lacking on ozone’s efficacy against an established endodontic biofilm. If ozone’s efficacy against biofilms is confirmed, the use of toxic and potentially dangerous sodium hypochlorite could be replaced in some clinical situations (i.e., regeneration, immature teeth, resorption) with a safer and effective alternative. Objective: The aim of the current study was to evaluate the anti-biofilm activity of different concentrations of ozonated water compared to various concentrations of NaOCl against an established endodontic biofilm of Enterococcus faecalis in root canal treated teeth in vitro. Materials and Methods: The crowns of similarly sized, maxillary anterior teeth were removed, and the roots cut to a standard length (12 mm). All root canals were instrumented to a standard size. Specimens were sterilized and then inoculated with E. faecalis, which were allowed to grow for two weeks to form an established biofilm. There were six treatment groups: 1) 6% NaOCl; 2) 1.5% NaOCl; 3) 16µg/mL ozonated water; 4) 25µg/mL ozonated water; 5) 50µg/mL ozonated water, and 6) saline. Following treatment, samples were collected, plated, and incubated for two days. The number of CFU/mL were determined, and samples visualized using confocal imaging. The effect of treatment group on bacterial counts was made using one-way ANOVA followed by pair-wise comparisons. Null Hypothesis: Endodontically treated teeth irrigated with ozonated water will not demonstrate a statistically significant decrease in the E. faecalis biofilm compared to those treated with sodium hypochlorite Results: CFUs were converted to log10 and compared using Fisher’s Exact tests or one-way ANOVA followed by pair-wise tests. In all observations utilizing NaOCl irrigation, no colonies formed following treatment. The two NaOCl groups, with 0 CFU/mL, were significantly different than the other four groups (p=0.009). Saline showed a trend towards higher CFU/mL than 50 µg/ml O3 (p=0.068). None of the other comparisons approached statistical significance (p=0.453 25 µg/ml O3, p=0.606 16 µg/ml O3, p=0.999 25 µg/ml O3 vs 50 µg/ml O3, p=0.990 16 µg/ml O3 vs 50 µg/ml O3, p=1.000 16 µg/ml O3 vs 25 µg/ml O3). Confocal imaging helped illustrate effects of irrigation and confirm CFU findings. Conclusion: The results of this study failed to reject the null hypothesis. There was a statistically significant difference in the E. faecalis biofilm remaining in the groups treated with ozonated water compared to those treated with NaOCl. However, there was a trend towards higher CFU/mL in the saline group compared to the 50µg/mL ozonated water group. According to this finding, future studies should evaluate the effects of higher concentrations of ozonated water against an established E. faecalis biofilm. In addition, other follow-up studies might include ozonated water’s effect on human cells, such as the stem cells of the apical papilla that are so critical to the success of regenerative endodontic procedures. Due to university and laboratory closures caused by the COVID-19 pandemic, this project was stopped short and an insufficient sample size did not allow for proper statistical power. Additional occasions should be run upon the university’s re-opening to allow for proper statistical power.Item Survival Analysis of Endodontically Treated Teeth in Patients with Diabetes and Hypertension within National Dental PBRN Practices(2022-06) Crosby, William Justin; Spolnik, Kenneth; Thyvalikakath, Thankam Paul; Ehrlich, Ygal; Warner, NedIntroduction: The prevalence of diabetes mellitus (DM) is rapidly increasing among the aging United States population. This poses a challenge to dental providers since DM and multiple oral conditions have been identified as comorbidities. Hypertension (HTN) is associated with more poorly controlled DM and has been identified as contributing to RCT tooth loss in prior studies. Links have also been established between DM and the survival rate of root canal treated teeth, however, previous research has focused on institutional settings despite the majority of RCT being performed in private dental practices. This study will use data from private dental practices to evaluate the survival rate of RCT teeth in patients with DM and HTN. Materials and Methods: This retrospective study evaluated the survival rate of endodontic treated teeth among patients with DM and HTN using National Dental PBRN Practice data. Electronic dental records from 42 private dental practices in the United States over a period of 15 years with a minimum 2-year follow-up comprising 11,532 root canal treated teeth were analyzed. Kaplan-Meier survival curves were used to demonstrate the effects of HTN and DM on RCT tooth survival and Cox proportional hazards survival analysis was used to evaluate the DM and HTN effects after accounting for age, gender, insurance, year of treatment, tooth type, and crown and filling placement as covariates. Results: Patients with HTN only had significantly lower risk of failure than patients with both HTN and DM (p=0.003). Patients with neither HTN nor DM had significantly lower risk of failure than patients with both HTN and DM (p=0.020). Patients with DM only did not have significantly different risk of failure than patients with both HTN and DM (p=0.223). Patients with DM only did not have significantly different risk of failure than patients with HTN only (p=0.361). Patients with neither HTN nor DM did not have significantly different risk of failure than patients with HTN only (p=0.121) or patients with DM only (p=0.800). Conclusions: Patients with both DM and HTN have an increased chance of root canal treated tooth failure while patients with only DM or only HTN do not. Evaluation of severity of DM may be more important in determining RCT failure and studies utilizing laboratory values should be considered for future research.Item Tissue-engineering-based strategies for regenerative endodontics(SAGE Publications, 2014-12) Albuquerque, M. T. P.; Valera, M. C.; Nakashima, M.; Nör, J. E.; Bottino, M. C.; Department of Biomedical and Applied Sciences, IU School of DentistryStemming from in vitro and in vivo pre-clinical and human models, tissue-engineering-based strategies continue to demonstrate great potential for the regeneration of the pulp-dentin complex, particularly in necrotic, immature permanent teeth. Nanofibrous scaffolds, which closely resemble the native extracellular matrix, have been successfully synthesized by various techniques, including but not limited to electrospinning. A common goal in scaffold synthesis has been the notion of promoting cell guidance through the careful design and use of a collection of biochemical and physical cues capable of governing and stimulating specific events at the cellular and tissue levels. The latest advances in processing technologies allow for the fabrication of scaffolds where selected bioactive molecules can be delivered locally, thus increasing the possibilities for clinical success. Though electrospun scaffolds have not yet been tested in vivo in either human or animal pulpless models in immature permanent teeth, recent studies have highlighted their regenerative potential both from an in vitro and in vivo (i.e., subcutaneous model) standpoint. Possible applications for these bioactive scaffolds continue to evolve, with significant prospects related to the regeneration of both dentin and pulp tissue and, more recently, to root canal disinfection. Nonetheless, no single implantable scaffold can consistently guide the coordinated growth and development of the multiple tissue types involved in the functional regeneration of the pulp-dentin complex. The purpose of this review is to provide a comprehensive perspective on the latest discoveries related to the use of scaffolds and/or stem cells in regenerative endodontics. The authors focused this review on bioactive nanofibrous scaffolds, injectable scaffolds and stem cells, and pre-clinical findings using stem-cell-based strategies. These topics are discussed in detail in an attempt to provide future direction and to shed light on their potential translation to clinical settings.Item Topical antibiotic treatment of infected dental pulps of monkeys(1966) Baker, G. Richard, 1931-A modified double-blind method of investigation was used in which the pulps of 52 monkey teeth were surgically exposed and left open to the oral environment for a period of 24 hours. One-half of the exposed pulps were treated with an antibiotic preparation and one-half with a pure starch control. The antibiotic compound consisted of erythromycin estolate 10 percent, streptomycin sulfate 10 percent, and starch q. s. as the vehicle. The teeth were extracted at 30 and 90 day intervals after treatment and histologically evaluated. Inflammation of a varying degree was observed in all of the teeth treated with either the antibiotic preparation or the starch control. However, those teeth treated with the antibiotic capping material exhibited much less inflammation than did the great majority of teeth treated with the starch control, in which abscess formation and necrosis were frequently observed. The pulps of those teeth treated with the antibiotic capping material demonstrated a decidedly more favorable reaction than did those pulps treated with the starch capping material. Calcific repair at the exposure site was not observed to be complete in any instance. The histologic findings for the antibiotic treated teeth were encouraging and warrant additional investigations of longer duration.Item Use of Electromagnetic Stimulation in Combination with Low Concentration Sodium Hypochlorite on an In Vitro Enterococcus Faecalis Biofilm on Root Canal Treated Teeth(2021) Brothers, Kara M.; Spolnik, Kenneth; Ehrlich, Ygal; Duarte, Simone; Bringas, JosefIntroduction: A novel device developed by J. Morita can generate electromagnetic stimulation (EMS) into the root canal. Objectives: The purpose of this study was to determine the anti-biofilm effect of EMS combined with low concentrations of NaOCl against an established biofilm of Enterococcus faecalis in an in vitro human tooth model. Materials and Methods: Single rooted human teeth were standardized and an E. faecalis biofilm was established in the canal. The specimens were subject to six treatment groups: 1) 1.5% NaOCl; 2) 1.5% NaOCl and EMS; 3) 0.25% NaOCl; 4) 0.25% NaOCl and EMS; 5) saline and 6) saline and EMS. Biofilm was collected, plated, and the number of colony forming units (CFU)/mL was used to determine antibacterial activity. Results: The effect of treatment group on bacterial counts were made using one-way ANOVA followed by pair-wise comparisons. Although there was no significant difference between individual groups tested, there was statistically significant difference between the average difference between ‘treatments with EMS’ and ‘treatments without EMS.’ Conclusion: EMS can improve the antibacterial efficacy of NaOCl against an established biofilm of E. faecalis in an in vitro human tooth modelItem Use of electromagnetic stimulation on an Enterococcus faecalis biofilm in root canal treated teeth in vitro(2019) Kindler, Justin K.; Spolnik, Kenneth J.; Duarte, Simone; Gregory, Richard L.; Ehrlich, Ygal; Bringas, Josef S.Introduction: Nonsurgical root canal therapy procedures aim to reduce the total microbial load within an infected root canal system through chemomechanical debridement of the root canal system via instrumentation in conjunction with an antibacterial irrigating solution. The most commonly used irrigant is sodium hypochlorite, often at concentrations toxic to human cells. Electromagnetic wave irradiation is a novel method of disinfection that has been shown to be bactericidal against planktonic microorganisms in solution, but its efficacy against an established biofilm is unknown. Pilot studies have demonstrated a synergistic killing effect with sodium hypochlorite through a process termed electromagnetic stimulation (EMS). If confirmed, lower concentrations of the current gold standard of 6.0-percent sodium hypochlorite could be used to irrigate infected root canals during endodontic treatment, resulting in less toxicity to human cells. There are also regenerative implications as EMS could be used to disinfect the root canals of immature teeth using 1.5-percent sodium hypochlorite, as recommended by the American Association of Endodontists. Objectives: The purpose of this in-vitro study was to evaluate the anti-biofilm effect of EMS against an established biofilm of Enterococcus faecalis. Materials and Methods: Single rooted teeth were cut to a standardized length (12 mm) and instrumented with a 45.05 Wave One Gold reciprocating file. Specimens were sterilized and inoculated with E. faecalis, which grew for two weeks to form an established biofilm. There were five treatment groups: 1) 6.0-percent sodium hypochlorite; 2) 1.5-percent sodium hypochlorite; 3) 1.5-percent sodium hypochlorite with EMS; 4) 0.9-percent saline with EMS and 5) 0.9-percent saline. Samples were collected, plated, and incubated for two days. The number of CFUs/mL was determined and converted to log10. The effect of treatment group on bacterial counts was made using Wilcoxon Rank Sums Test. One sample per group was scored and split for confocal imaging. Null Hypothesis: Teeth treated with EMS in combination with 1.5-percent sodium hypochlorite or 0.9-percent saline will not demonstrate a significant anti-biofilm effect in comparison to those treated with 6.0-percent sodium hypochlorite alone. Results: 0.9-percent saline and 0.9-percent saline with EMS were significantly higher than 6.0-percent NaOCl, 1.5-percent NaOCl, and 1.5-percent NaOCl with EMS. 0.9-percent saline was significantly higher than 0.9-percent saline with EMS. The three groups that included treatment with NaOCl were not significantly different from each other. Confocal imaging confirmed the CFU findings. Conclusion: Because there was no growth in any of the NaOCl groups, the null hypothesis cannot be rejected. However, there was an antibiofilm effect when comparing the two saline groups, demonstrating that EMS has an antibiofilm effect. Future studies should focus on determining what concentration of NaOCl is most effective in combination with EMS.