Development of a Double Antibiotic Electrospun scaffold for Root Canal Disinfection

Date
2015
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
M.S.
Degree Year
2016
Department
School of Dentistry
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Objective: This study synthesized electrospun polymer-based scaffolds containing ciprofloxacin (CIP) and doxycycline (DOX), as a scaffold mimic of Double Antibiotic Paste (DAP) and determined, in vitro, its mechanical properties, chemical composition, and antimicrobial effectiveness against multiple endodontic bacterium.

Methods: Polydioxanone sutures (PDS) were dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol (HFP), mixed with CIP/DOX (i.e., 50%), and electrospun under optimized conditions into fibrous scaffolds. Tensile testing was used to evaluate the mechanical properties. Antimicrobial efficacy was determined over time using aliquots collected at 1, 4, 7, 14 day and agar diffusion assays. Two-Way Anova. Significance P < 0.05.

Results: Tensile strength (MPa) of the CIP/DOX scaffold did not show significant difference from the control (pure PDS). Elongation at break (%) did show a significant difference between CIP/DOX scaffolds and the control group. Young’s modulus of elasticity (MPa) showed a significant difference between CIP/DOX scaffolds and the control. CIP-containing scaffolds did not inhibit Gram-negative (F. nucleatum and P. gingivalis) bacteria as effectively when compared to Gram-positive bacteria (E. faecalis and S. gordina). DOX-containing scaffolds showed less inhibition against Gram-positive (E. faecalis and S. gordina) bacteria then Gram-negative bacteria (F. nucleatum and P. gingivalis). In combination, CIP/DOX scaffolds showed significant inhibition against G(-) and G(+) bacteria.

Conclusion: Electrospun double antibiotic scaffold demonstrated increased antimicrobial efficacy proving the potential for future clinical use to disinfect the RCS in permanent immature necrotic teeth to aid in regenerative treatment and or in persistent infections.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Rights
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}