- Browse by Subject
Browsing by Subject "Microscopy, Confocal"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Deep Tissue Fluorescent Imaging in Scattering Specimens Using Confocal Microscopy(Cambridge University Press, 2011-08) Clendenon, Sherry G.; Young, Pamela A.; Ferkowicz, Michael; Phillips, Carrie; Dunn, Kenneth W.; Department of Pediatrics, IU School of MedicineIn scattering specimens, multiphoton excitation and nondescanned detection improve imaging depth by a factor of 2 or more over confocal microscopy; however, imaging depth is still limited by scattering. We applied the concept of clearing to deep tissue imaging of highly scattering specimens. Clearing is a remarkably effective approach to improving image quality at depth using either confocal or multiphoton microscopy. Tissue clearing appears to eliminate the need for multiphoton excitation for deep tissue imaging.Item Electrical coupling between ventricular myocytes and myofibroblasts in the infarcted mouse heart(European Society of Cardiology, 2018-03-01) Rubart, Michael; Tao, Wen; Lu, Xiao-Long; Conway, Simon J.; Reuter, Sean P.; Lin, Shien-Fong; Soonpaa, Mark H.; Medicine, School of MedicineAims: Recent studies have demonstrated electrotonic coupling between scar tissue and the surrounding myocardium in cryoinjured hearts. However, the electrical dynamics occurring at the myocyte-nonmyocyte interface in the fibrotic heart remain undefined. Here, we sought to develop an assay to interrogate the nonmyocyte cell type contributing to heterocellular coupling and to characterize, on a cellular scale, its voltage response in the infarct border zone of living hearts. Methods and results: We used two-photon laser scanning microscopy in conjunction with a voltage-sensitive dye to record transmembrane voltage changes simultaneously from cardiomyocytes and adjoined nonmyocytes in Langendorff-perfused mouse hearts with healing myocardial infarction. Transgenic mice with cardiomyocyte-restricted expression of a green fluorescent reporter protein underwent permanent coronary artery ligation and their hearts were subjected to voltage imaging 7-10 days later. Reporter-negative cells, i.e. nonmyocytes, in the infarct border zone exhibited depolarizing transients at a 1:1 coupling ratio with action potentials recorded simultaneously from adjacent, reporter-positive ventricular myocytes. The electrotonic responses in the nonmyocytes exhibited slower rates of de- and repolarization compared to the action potential waveform of juxtaposed myocytes. Voltage imaging in infarcted hearts expressing a fluorescent reporter specifically in myofibroblasts revealed that the latter were electrically coupled to border zone myocytes. Their voltage transient properties were indistinguishable from those of nonmyocytes in hearts with cardiomyocyte-restricted reporter expression. The density of connexin43 expression at myofibroblast-cardiomyocyte junctions was ∼5% of that in the intercalated disc regions of paired ventricular myocytes in the remote, uninjured myocardium, whereas the ratio of connexin45 to connexin43 expression levels at heterocellular contacts was ∼1%. Conclusion: Myofibroblasts contribute to the population of electrically coupled nonmyocytes in the infarct border zone. The slower kinetics of myofibroblast voltage responses may reflect low electrical conductivity across heterocellular junctions, in accordance with the paucity of connexin expression at myofibroblast-cardiomyocyte contacts.Item Monitoring focal adhesion kinase phosphorylation dynamics in live cells(Royal Society of Chemistry, 2017-07-24) Damayanti, Nur P.; Buno, Kevin; Narayanan, Nagarajan; Harbin, Sherry L Voytik; Deng, Meng; Irudayaraj, Joseph M.K.; Medicine, School of MedicineFocal adhesion kinase (FAK) is a cytoplasmic non-receptor tyrosine kinase essential for a diverse set of cellular functions. Current methods for monitoring FAK activity in response to an extracellular stimulus lack spatiotemporal resolution and/or the ability to perform multiplex detection. Here we report on a novel approach to monitor the real-time kinase phosphorylation activity of FAK in live single cells by fluorescence lifetime imaging.