- Browse by Subject
Browsing by Subject "Degree of conversion"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Beam profile characterization of light-emitting-diode curing units and its effect on polymerization of a resin-matrix composite(2017) AlZain, Afnan Omar; Platt, Jeffrey A.; Chu, Tien-Min G.; Bottino, Marco C.; Hara, Anderson T.; Goodpaster, John V.; Roulet, Jean-FrancoisThe general aim of this study was to investigate the influence of the localized irradiance beam profiles from multiple light-emitting-diode (LED) light-curing units (LCUs) on the polymerization pattern within a resin-matrix composite (RMC). Irradiance beam profiles were generated from one quartz-tungsten-halogen and various single and multiple emission peak LED LCUs using a camera-based beam profiler system combined with LCU power measurements obtained using an integrating sphere/spectrometer assembly. The influence of distance on irradiance, radiant exposure (RE) and degree of conversion (DC) on the top and bottom surfaces of a RMC increment, using various LCUs, at two clinically relevant distances was investigated. Molar absorptivity of the photoinitiators present in the nano-hybrid RMC (Tetric EvoCeram bleaching shade-XL) assessed was using UV-spectrophotometry. The correlation among irradiance, RE and DC was explored. A mapping approach was used to investigate DC, microhardness and cross-link density (CLD) within 5×5×2 mm specimens at various depths; top, 0.5, 0.7, 0.9, 1.1, 1.3,1.5 mm and bottom. The localized irradiance correlation with its corresponding DC, microhardness and CLD was explored, and localized DC correlation with microhardness was assessed. The DC was measured using micro-Raman spectroscopy, and CLD was assessed by an ethanol-softening method (%KHN reduction) using an automated microhardness tester. Molar absorptivity of diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide was 20-fold higher than camphorquinone. Non-uniform LCU beam profiles caused localized polymerization discrepancies that were significant at specific depths and points within the specimens with respect to DC, microhardness and CLD, which did not follow a specific pattern regardless of the LCU or curing distance assessed. A moderate correlation was displayed among irradiance, RE and DC. The localized irradiance from the LCUs was weakly correlated with the corresponding DC, microhardness and CLD on the top surface of a RMC at both curing distances. The localized microhardness was moderately correlated with DC. In conclusion, polymerization within the RMC investigated was non-uniform and did not reflect the LCU irradiance pattern at the area assessed. Also, a mapping approach within the specimens provided a detailed polymerization pattern assessment occurring within a RMC increment. Therefore, the LCUs explored may potentially increase the risk of RMC fracture.Item Characterizing Curing Efficiency of EGCG-Encapsulated Halloysite Nanotube Modified Adhesives for Durable Dentin–Resin Interfaces(MDPI, 2024-12-24) Alhijji, Saleh; Platt, Jeffrey A.; Al-Maflehi, Nassr; Alhotan, Abdulaziz; Haider, Julfikar; Bottino, Marco C.; Windsor, L. Jack; Biomedical and Applied Sciences, School of DentistryMatrix metalloproteinase (MMP)-induced collagen degradation at the resin-dentin interface remains a significant challenge for maintaining the longevity of dental restorations. This study investigated the effects of epigallocatechin-3-gallate (EGCG), a potent MMP inhibitor, on dental adhesive curing efficiency when encapsulated in halloysite nanotubes (HNTs). EGCG-loaded HNTs were incorporated into a commercial dental adhesive (Adper Scotchbond Multi-Purpose) at 7.5% and 15% w/v concentrations. To isolate the effects of each component, the study included three control groups: unmodified adhesive (negative control), adhesive containing only HNTs, and adhesive containing only EGCG (0.16% and 0.32%, equivalent to the EGCG content in EGCG-HNT groups). Degree of conversion (DC), polymerization conversion (PC), and Vickers micro-hardness (VHN) were assessed to evaluate curing efficiency. The addition of 7.5% EGCG-encapsulated HNTs maintained curing properties similar to the control, showing no significant differences in DC (80.97% vs. 81.15%), PC (86.59% vs. 85.81%), and VHN (23.55 vs. 24.12) (p > 0.05). In contrast, direct incorporation of EGCG at 0.32% significantly decreased DC (73.59%), PC (80.63%), and VHN (20.56) values compared to both control and EGCG-HNT groups (p < 0.05). Notably, HNT encapsulation mitigated these negative effects on polymerization, even at higher EGCG concentrations. These findings demonstrate that EGCG encapsulation in HNTs can maintain the curing efficiency of dental adhesives while potentially preserving the MMP-inhibitory benefits of EGCG.Item Evaluation of multiple and single emission peak light emitting diode light curing units effect on the degree of conversion and microhardness of resin-based pit and fissure sealant(2017) Alqahtani, Saleh Ali M.; Soto, Armando E.; Platt, Jeffrey A.; Cook, Norman BlaineObjective: The objective was to assess a multiple emission peak light-emitting-diode (LED) light-curing unit (LCU) by measuring the polymerization efficiency through the degree of conversion (DC) and Knoop microhardness (KHN) of a resin-based pit and fissure sealant at various light curing times and two distances compared to a single emission peak LED LCU. Method: Sixty disks of resin-based pit and fissure sealant (Delton, DENTSPLY, York, PA) samples (6x1mm) were fabricated (n=5/LCU/group). Prepared samples were polymerized using 10, 20 and 40 second curing time at 2 or 4 mm curing distances. The irradiance and radiant exposure received on the top/bottom surfaces of the samples were measured using the Managing Accurate Resin Curing-Resin Calibrator (MARC-RC) system. The samples were stored at 37°C for one hour. Then, the DC (n=3/surface) and KHN (n=5/surface) measurements were collected on the top and bottom surfaces using Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR) and a microhardness tester (Instron) utilizing 25-gm at 10 seconds dwell time, respectively. Multiple-way ANOVA was performed followed by Tukey test (α=0.05). Result: The irradiance from the multiple emission peak LED LCU was significantly higher than the single emission peak LED LCU (1312.6 and 768.3 mW/cm2) respectively. Moreover, the multiple emission peak LED LCU displayed significantly higher DC (82.5%) and microhardness (26.2 KHN) compared to the single emission peak LED LCU (75.5% DC and 21.2 KHN) when curing samples at 2 and 4 mm curing distances assessed using 10, 20 and 40-second curing times. The 10 second cure at 4 mm showed significantly lower DC and KHN values compared to the other groups. Conclusion: The multiple emission peak LED LCU demonstrated significantly higher irradiance, DC and KHN compared to the single emission peak LED LCU on a resin-based pit and fissure sealant at 2 and 4 mm curing distances and 10, 20 and 40 second curing times. Therefore, the multiple emission peak LED LCU performed higher than the single emission peak LED LCU.Item The influence of delayed light curing on the polymerization contraction stress and degree of conversion in dual-cured resin luting agents(2010) Iskandar, Mounir; Platt, Jeffrey A., 1958-; Andres, Carl J., 1942; Hovijitra, Suteena, 1944-; Brown, David T.; Levon, John A.The purpose of this study was 1) To determine the impact of eliminating or delaying the photo-activation procedure on the polymerization contraction stress (PCS)and degree of conversion (DC) of a dual-cured resin luting agent, and 2) To determine the amount of delay in photo-initiation of the dual-cured resin cements that can achieve a reduced PCS value with the highest possible DC. The amount of PCS and DC of a dual-cured resin luting agent was determined using a tensometer and ATR spectroscopic technique, respectively. Photo-activation delay in seven tested groups was 0 min, 2 min, 4 min, 6 min, 8 min, 10 min and no photoactivation. Five samples for each group were tested. There were two hypotheses for this study: 1) A significant decrease in the amount of PCS associated with delayed photo-activation, and 2) A significant increase in DC associated with delayed photo-activation.The PCS of the chemical-cure luting agent had significantly lower value than all of the light-cure groups. For the light-cure groups, those with a 4-min delay had higher PCS than those with delays of 0 min, 2 min, 6 min, 8 min, and 10 min. The zero (0)-min and 2-min delay had higher PCS than the 6-min, 8-min, and 10-min delay; and the 6-min delay had higher PCS than the 8-min and 10-min delay. The PCS decreased 0.086 MPa per minute of delay. The DC of the chemical-cure luting agent had significantly lower value than the 2-min, 4-min, 6-min, 8-min, and 10-min delaylight cure. For the light-cure groups, 0-min delay had a lower DC than the 2-min, 4-min, 6-min, 8-min, and 10-min delay; 2-min delay had lower DC than 4-min, 6-min, 8-min, and 10-min delay. The 4-min and 6-min delay had lower DC than the 8-min and 10-min delay; and the 8-min delay had a lower degree of conversion by peak area than the 10- minute delay. The DC increased 0.021 per minute of delay. Extending the stress relief period of the dual-cured luting agents by delaying light activation has a significant impact on PCS and DC values. There was significant decrease in PCS with the delayed light curing of the resin luting agent. Significant increase in DC was noticed when light activation was delayed in the dual-cured resin luting agents.Item Long-Term Dentin Bonding Performance of Universal Adhesives: The Effect of HEMA Content and Bioactive Resin Composite(MDPI, 2024-12-16) Wu, Di; Yao, Ye; Cifuentes-Jimenez, Carolina Cecilia; Sano, Hidehiko; Álvarez-Lloret, Pedro; Yamauti, Monica; Tomokiyo, Atsushi; Biomedical and Applied Sciences, School of DentistryThis study investigated the effects of resin composites (RCs) containing surface pre-reacted glass ionomer (S-PRG) filler on the dentin microtensile bond strength (μTBS) of HEMA-free and HEMA-containing universal adhesives (UAs). Water sorption (WS) and solubility (SL), degree of conversion (DC), and ion release were measured. The UAs BeautiBond Xtreme (BBX; 0% HEMA), Modified Adhesive-1 (E-BBX1; 5% HEMA), Modified Adhesive-2 (E-BBX2; 10% HEMA), and two 2-step self-etch adhesives (2-SEAs): FL-BOND II (FBII; with S-PRG filler) and silica-containing adhesive (E-FBII) were used. Teeth were restored with Beautifil Flow Plus F00 with S-PRG filler (BFP) and flowable resin composite with silica filler (E-BFP). μTBS was evaluated after 24 h and 6 months of water storage. WS and SL measurement followed ISO 4049:2019; spectroscopy measured DC; ICP-MS evaluated ion release. BBX and FBII presented the highest DC. The adhesives did not comply with the WS ISO requirements, but the bonding resin of 2-SEAs complied with the SL threshold. BFP released more ions than E-BFP. BFP positively affected the μTBS of UAs, regardless of HEMA concentration after 24 h, comparable to the 2-SEAs. The 6 months μTBS decrease depended on the adhesive and RC combination. HEMA did not affect the μTBS of UAs, while bioactive resins had a positive impact.Item Performance of Multiple Emission Peak Light Emitting Diode Light Curing Unit: Degree of Conversion and Microhardness of Resin-Based Pit and Fissure Sealant(2022-07) Ba Armah, Ibrahim; Soto, Armando E.; Platt, Jeffrey A.; Al Dehailan, Laila A.Background: The light-cured resin-based pit and fissure sealants success and longevity are enhanced by sufficient curing. Multiple emission peak Light Emitting Diode Light Curing Units offer a wider range of wavelengths and different levels of irradiances to ensure sufficient curing.The irradiance is considered a main curing factor that can affect the material properties. Purpose: The aim of this study was to assess the effect of different settings of a multiwave LED LCU on the degree of conversion and microhardness of a pit and fissure sealant comparing the irradiance of 1000 mW/cm2 to 1400 mW/cm2 and 3200 mW/cm2 irradiances of the LCU using manufacturer’s guidelines for curing times at 2, 4 and, 6 mm distances. Methods: A multiwave LED light curing unit was evaluated on three different irradiance levels 1000 mW/cm2 (S), 1400 mW/cm2 (H), and 3200 mW/cm2 (X). A total of 90 samples made from the fissure sealant were fabricated and divided into eighteen groups (n=5/group). Samples were cured following manufacturer’s guidelines of curing times for each curing mode at 2, 4, or 6 mm distance between the light tip and top of samples. The DC was measured using (ATR-FTIR) spectroscopy. The KHN test was performed on five different locations of each specimen using a hardness tester (Leco LM247AT, MI, USA, software; Confident V 2.5.2). Results: The top DC for H-8 was significantly higher than S-10 at 2 and 4mm, H-20 DC was significantly lower than S-30 at only 2mm. The bottom DC for H-8 was significantly higher than S-10 at 2mm only, H-20 DC was significantly lower than S-30 at 4 and 6mm only. H-8 KHN at top surface was significantly lower than S-10 at 2mm only, H-20 was significantly lower than S-30 at 2 and 6mm only. H-8 KHN at bottom surface was significantly lower than S-10 at 4 and 6mm but significantly higher at 2mm. H-20 was significantly lower than S-30 at 2mm but significantly higher at 4 and 6mm. The top DC for X-3 was significantly lower than S-10 at all curing distances with no significant difference at all curing distances between X-9 and S-30. The bottom DC for X-3 was significantly higher than S-10 at all curing distances with no significant difference between X-9 and S-30. X-3 KHN at top surface was significantly lower than S-10s at all curing distances. X-9 was significantly lower than S-30 at 6mm only. X-3 KHN at bottom surface was significantly lower than S-10 at 2 and 4mm only with no significant difference at all curing distances between X-9 and S-30. Conclusions: Using a multiwave LED LCU to polymerize Delton Opaque resin-based fissure sealants will result in an optimal DC and KHN values for any irradiance level if the curing distance is kept at 4 mm or less and with at least two cycles of the shortest curing time recommended by the manufacturer. Using a multiwave LED LCU with 1000, 1400 or 3200 mW/cm2 irradiance levels with shortest curing times recommended resulted in unsatisfactory DC and KHN levels. LED LCU with high and extra high irradiance levels (1400 and 3200 mW/cm2) can result in high DC and KHN levels when used adequately. Xtra Power mode (3200 mW/cm2) used on shortest curing time (3 seconds) resulted in significantly lower mechanical properties and for that reason it is not recommended to be used.Item Translucency and degree of conversion of resin cement with different thickness of full contour zirconia(2015) Supornpun, Noppamath; Chu, Tien-Min Gabriel; Brown, David; Hovijitra, Suteera; Bottino, Marco C.; Levon, John A.Background: Traditionally, zirconia has been used as a core material for allceramic crowns that are later covered by a more esthetic veneering layer. Recently, new zirconia materials with higher translucency commonly referred to as the “full contour zirconia” have been introduced with the aim to allow dentist to fabricate entire allceramic crown from the material with acceptable esthetic and mechanical functions without the need for veneering. However, there is little information in the literature regarding the translucency of full contour zirconia and the degree of conversion of resin cement underneath the full contour zirconia. Objectives: 1) To investigate the translucency parameter (TP) of recently marketed full contour zirconia and compare that to traditional zirconia and lithium disilicate glass ceramic (LDGC) at different thicknesses. 2) To evaluate the degree of conversion (DC) of the resin cement through different thicknesses of the full contour zirconia, traditional zirconia and LDGC. Alternative hypothesis: The new generation zirconia at the clinically recommended thickness has lower translucency than that of LDGC and higher than that of non-veneered traditional zirconia. In addition, DC of resin cement under full contour zirconia is lower than that of LDGC and higher than that of traditional zirconia. Methods: 150 ceramic specimens (12 x12 mm with thickness of 1-2 mm for LDGC and Zirconia) were divided into 6 groups according to the type of material, as follow: LDGC (IPS e-max CAD), Traditional Zirconia (CAP QZ), full contour zirconia (CAP FZ, Zirlux, Bruxzir, KDZ Bruxer). The TP for materials at various thicknesses were measured by a spectrophotometer (CM-2600D). The DC of the light curing resin cement (Variolink II) underneath the ceramic disks was measured by FTIR. Result: All full contour zirconia has lower translucency parameter and light transmission than LDGC. The translucency parameter decreases with increasing thickness of any type of ceramic. There were no significant differences in the degree of conversion of resin cement among the type of ceramic disc, except Bruxzir. The correlation of TP between various thicknesses and the types of ceramic materials was established by a regression analysis.