Translucency and degree of conversion of resin cement with different thickness of full contour zirconia

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2015
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
M.S.D.
Degree Year
2015
Department
School of Dentistry
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Background: Traditionally, zirconia has been used as a core material for allceramic crowns that are later covered by a more esthetic veneering layer. Recently, new zirconia materials with higher translucency commonly referred to as the “full contour zirconia” have been introduced with the aim to allow dentist to fabricate entire allceramic crown from the material with acceptable esthetic and mechanical functions without the need for veneering. However, there is little information in the literature regarding the translucency of full contour zirconia and the degree of conversion of resin cement underneath the full contour zirconia. Objectives: 1) To investigate the translucency parameter (TP) of recently marketed full contour zirconia and compare that to traditional zirconia and lithium disilicate glass ceramic (LDGC) at different thicknesses. 2) To evaluate the degree of conversion (DC) of the resin cement through different thicknesses of the full contour zirconia, traditional zirconia and LDGC. Alternative hypothesis: The new generation zirconia at the clinically recommended thickness has lower translucency than that of LDGC and higher than that of non-veneered traditional zirconia. In addition, DC of resin cement under full contour zirconia is lower than that of LDGC and higher than that of traditional zirconia. Methods: 150 ceramic specimens (12 x12 mm with thickness of 1-2 mm for LDGC and Zirconia) were divided into 6 groups according to the type of material, as follow: LDGC (IPS e-max CAD), Traditional Zirconia (CAP QZ), full contour zirconia (CAP FZ, Zirlux, Bruxzir, KDZ Bruxer). The TP for materials at various thicknesses were measured by a spectrophotometer (CM-2600D). The DC of the light curing resin cement (Variolink II) underneath the ceramic disks was measured by FTIR. Result: All full contour zirconia has lower translucency parameter and light transmission than LDGC. The translucency parameter decreases with increasing thickness of any type of ceramic. There were no significant differences in the degree of conversion of resin cement among the type of ceramic disc, except Bruxzir. The correlation of TP between various thicknesses and the types of ceramic materials was established by a regression analysis.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
MeSH Subjects
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}