- Browse by Date
Department of Pathology and Laboratory Medicine Works
Permanent URI for this collection
Browse
Browsing Department of Pathology and Laboratory Medicine Works by Issue Date
Now showing 1 - 10 of 772
Results Per Page
Sort Options
Item Frontotemporal Dementia and Parkinsonism Linked to Chromosome 17: A New Group of Tauopathies(Wiley, 1998-04) Spillantini, Maria Grazia; Bird, Thomas D.; Ghetti, Bernardino; Pathology and Laboratory Medicine, School of MedicineFrontotemporal dementia is a neurological disorder characterised by personality changes, deterioration of memory and executive functions as well as stereotypical behaviour. Sometimes a Parkinsonian syndrome is prominent. Several cases of frontotemporal dementia are hereditary and recently families have been identified where the disease is linked to chromosome 17q21-22. Although, there is clinical and neuropathological variability among and within families, they all consistently present a symptomathology that has led investigators to name the disease "Frontotemporal Dementia and Parkinsonism linked to chromosome 17." Neuropathologically, these patients present with atrophy of frontal and temporal cortex as well as of basal ganglia and substantia nigra. In the majority of cases these features are accompanied by neuronal loss, gliosis and microtubule-associated protein tau deposits which can be present in both neurones and glial cells. The distribution, structural and biochemical characteristics of the tau deposits differentiate them from those present in Alzheimer's disease, corticobasal degeneration, progressive supranuclear palsy and Pick's disease. No beta-amyloid deposits are present. The clinical and neuropathological features of the disease in these families suggest that Frontotemporal Dementia and Parkinsonism linked to chromosome 17 is a distinct disorder. The presence of abundant tau deposits in the majority of these families define this disorder as a new tauopathy.Item Novel Prostate-Specific Promoter Derived from PSA and PSMA Enhancers(Elsevier, 2002-09) Lee, Sang-Jin; Kim, Hong-Sup; Yu, Rong; Lee, KangRyul; Gardner, Thomas A.; Jung, Chaeyong; Jeng, Meei-Huey; Yeung, Fan; Cheng, Liang; Kao, Chinghai; Pathology and Laboratory Medicine, School of MedicineThe expression of prostate-specific membrane antigen (PSMA) and prostate-specific antigen (PSA), two well characterized marker proteins, remains highly active in the hormone refractory stage of prostate cancer. In this study, an artificial chimeric enhancer (PSES) composed of two modified regulatory elements controlling the expression of PSA and PSMA genes was tested for its promoter activity and tissue specificity using the reporter system. As a result, this novel PSES promoter remained silent in PSA- and PSMA-negative prostate and non-prostate cancer cell lines, but mediated high levels of luciferase in PSA- and PSMA-expressing prostate cancer cell lines in the presence and absence of androgen. To determine whether PSES could be used for in vivo gene therapy of prostate cancer, a recombinant adenovirus, Ad-PSES-luc, was constructed. Luciferase activity in prostate cancer cell lines mediated by Ad-PSES-luc was 400- to 1000-fold higher than in several other non-prostate cell lines, suggesting the high tissue-specificity of the PSES promoter in an adenoviral vector. Finally, recombinant virus Ad-PSES-luc was injected into mice to evaluate the tissue-discriminatory promoter activity in an experimental animal. Unlike Ad-CMV-luc, the luciferase activity from systemic injection of Ad-PSES-luc was fairly low in all major organs. However, when injected into prostate, Ad-PSES-luc drove high luciferase activity almost exclusively in prostate and not in other tissues. Our results demonstrated the potential use of PSES for the treatment of androgen-independent prostate cancer patients.Item Abundant tau filaments and nonapoptotic neurodegeneration in transgenic mice expressing human P301S tau protein(Society for Neuroscience, 2002-11) Allen, Bridget; Ingram, Esther; Takao, Masaki; Smith, Michael J.; Jakes, Ross; Virdee, Kanwar; Yoshida, Hirotaka; Holzer, Max; Craxton, Molly; Emson, Piers C.; Atzori, Cristiana; Migheli, Antonio; Crowther, R. Anthony; Ghetti, Bernardino; Spillantini, Maria Grazia; Goedert, Michel; Pathology and Laboratory Medicine, School of MedicineThe identification of mutations in the Tau gene in frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) has made it possible to express human tau protein with pathogenic mutations in transgenic animals. Here we report on the production and characterization of a line of mice transgenic for the 383 aa isoform of human tau with the P301S mutation. At 5-6 months of age, homozygous animals from this line developed a neurological phenotype dominated by a severe paraparesis. According to light microscopy, many nerve cells in brain and spinal cord were strongly immunoreactive for hyperphosphorylated tau. According to electron microscopy, abundant filaments made of hyperphosphorylated tau protein were present. The majority of filaments resembled the half-twisted ribbons described previously in cases of FTDP-17, with a minority of filaments resembling the paired helical filaments of Alzheimer's disease. Sarkosyl-insoluble tau from brains and spinal cords of transgenic mice ran as a hyperphosphorylated 64 kDa band, the same apparent molecular mass as that of the 383 aa tau isoform in the human tauopathies. Perchloric acid-soluble tau was also phosphorylated at many sites, with the notable exception of serine 214. In the spinal cord, neurodegeneration was present, as indicated by a 49% reduction in the number of motor neurons. No evidence for apoptosis was obtained, despite the extensive colocalization of hyperphosphorylated tau protein with activated MAP kinase family members. The latter may be involved in the hyperphosphorylation of tau.Item Elevated protein kinase C alpha expression may be predictive of tamoxifen treatment failure(Cancer Research UK, 2003-04-29) Tonetti, D.A.; Morrow, M.; Kidwai, N.; Gupta, A.; Badve, Sunil; Pathology and Laboratory Medicine, School of MedicineWe previously reported that stable transfection of protein kinase C alpha (PKCα) into T47D human breast cancer cells results in tamoxifen (TAM)-resistant tumour growth. Relevance of PKCα expression in clinical specimens was determined by comparing PKCα expression in tumours from patients exhibiting disease recurrence with patients remaining disease-free following TAM treatment. Our results suggest that PKCα expression may predict TAM treatment failure.Item Early-onset Dementia with Lewy Bodies(Wiley, 2004-04) Takao, Masaki; Ghetti, Bernardino; Yoshida, Hirotaka; Piccardo, Pedro; Narain, Yolanda; Murrell, Jill R.; Vidal, Ruben; Glazier, Bradley S.; Jakes, Ross; Tsutsui, Miho; Grazia Spillantini, Maria; Crowther, R. Anthony; Goedert, Michel; Koto, Atsuo; Pathology and Laboratory Medicine, School of MedicineThe clinical and neuropathological characteristics of an atypical form of dementia with Lewy bodies (DLB) are described. The proband experienced difficulties in her school performance at 13 years of age. Neurological examination revealed cognitive dysfunction, dysarthria, parkinsonism and myoclonus. By age 14 years, the symptoms had worsened markedly and the proband died at age 15 years. On neuropathological examination, the brain was severely atrophic. Numerous intracytoplasmic and intraneuritic Lewy bodies, as well as Lewy neurites, were present throughout the cerebral cortex and subcortical nuclel; vacuolar changes were seen in the upper layers of the neocortex and severe neuronal loss and gliosis were evident in the cerebral cortex and substantia nigra. Lewy bodies and Lewy neurites were strongly immunoreactive for alpha-synuclein and ubiquitin. Lewy bodies were composed of filamentous and granular material and isolated filaments were decorated by alpha-synuclein antibodies. Immunohistochemistry for tau or beta-amyloid yielded negative results. The etiology of this atypical form of DLB is unknown, since there was no family history and since sequencing of the exonic regions of alpha-Synuclein, beta-Synuclein, Synphilin-1, Parkin, Ubiquitin C-terminal hydrolase L1 and Neurofilament-M failed to reveal a pathogenic mutation. This study provides further evidence of the clinical and pathological heterogeneity of DLB.Item Species Name Change for Pneumocystis(American Society for Cytotechnology, 2005-03) Frain, BarbaraItem Compliance with Certificate Maintenance(American Society for Cytotechnology, 2006-07) Frain, BarbaraItem Frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17)(Springer Nature, 2006-08-09) Wszolek, Zbigniew K.; Tsuboi, Yoshio; Ghetti, Bernardino; Pickering-Brown, Stuart; Baba, Yasuhiko; Cheshire, William P.; Pathology and Laboratory Medicine, School of MedicineFrontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) is an autosomal dominant neurodegenerative disorder, which has three cardinal features: behavioral and personality changes, cognitive impairment, and motor symptoms. FTDP-17 was defined during the International Consensus Conference in Ann Arbor, Michigan, in 1996. The prevalence and incidence remain unknown but FTDP-17 is an extremely rare condition. It is caused by mutations in the tau gene, which encodes a microtubule-binding protein. Over 100 families with 38 different mutations in the tau gene have been identified worldwide. The phenotype of FTDP-17 varies not only between families carrying different mutations but also between and within families carrying the same mutations. The pathogenetic mechanisms underlying the disorder are thought to be related to the altered proportion of tau isoforms or to the ability of tau to bind microtubules and to promote microtubule assembly. Definitive diagnosis of FTDP-17 requires a combination of characteristic clinical and pathological features and molecular genetic analysis. Genetic counseling should be offered to affected and at-risk individuals; for most subtypes, penetrance is incomplete. Currently, treatment for FTDP-17 is only symptomatic and supportive. The prognosis and rate of the disease's progression vary considerably among individual patients and genetic kindreds, ranging from life expectancies of several months to several years, and, in exceptional cases, as long as two decades.Item Alois Alzheimer: His Life and Times(Wiley, 2007-01) Goedert, Michel; Ghetti, Bernardino; Pathology and Laboratory Medicine, School of MedicineBetween national unification and World War I, Germany was preeminent in many areas of science and medicine. Alois Alzheimer, who lived during this period, was one of the founders of the field of neuropathology. His name will always be linked with the form of dementia that he described 100 years ago. Here we mark this anniversary by discussing Alzheimer's contributions to dementia research in the context of his life and times.Item Career Building Strategies(American Society for Cytotechnology, 2007-04) Frain, BarbaraCareer-building suggestions are provided for pending/recent graduates of cytotechnology programs.