- Browse by Date
Earth Sciences Department Theses and Dissertations
Permanent URI for this collection
About the Program
The IUPUI graduate program in Geology leads to a Master of Science degree from Indiana University. Our terminal degree at the IUPUI campus is the Master of Science. As a result, our faculty are able to focus their attention on our Masters program student research. We offer a thesis and non-thesis option; however, typically only thesis-option students are considered for funding. Our thesis option requires 24 credit hours of graduate level courses and 6 credit hours of a research thesis. We have between 8-12 full-time graduate students per year.
Interested students should contact us prior to applying. If applicable, an appointment/visit can be set up for you to see our facilities and meet a few of our faculty. Students can apply with an interest in a specific faculty member or a group of faculty members. Admission decisions are decided by our graduate committee and not individual faculty members. Once you enter the program, you will take a majority of your courses in your first year. Also, you will choose your research advisor and submit your thesis (research) proposal. Your second year (including the summer) is focused on completing your research project and writing your thesis while finishing your course work.
For more information: http://www.geology.iupui.edu/Degree_Programs/Graduate_Studies/index.htm
Browse
Browsing Earth Sciences Department Theses and Dissertations by Issue Date
Results Per Page
Sort Options
Item RIPARIAN ZONE HYDROLOGY AND HYDROGEOMORPHIC SETTING OF A GLACIATED VALLEY IN CENTRAL INDIANA(2007) Smith, Andrew Philip; Vidon, Philippe G.; Tedesco, Lenore P.; Doss, Paul K.This study investigates the hydrological functioning of a riparian zone in central Indiana in a glaciated valley with concave topography (16% slope gradient) and ground water seeps on the valley walls. Unlike sites found in most riparian zone studies with lateral ground water inputs (Clement et al., 2003; Jordan et al., 1993; Blicher-Mathiesen and Hoffman, 1999; Hoffman et al., 2000), the site in this study is connected to thin, permeable upland sediments (≈2 m). The objectives of this research include: 1) understanding the influence of the hydrogeomorphic (HGM) setting on riparian hydrology (including determining the sources of water to the site), 2) determining how the HGM setting influences riparian zone water quality functioning, and 3) comparing the results from this site with conceptual models of riparian zone hydrologic functioning. Water chemistry and hydrometric data were collected over a 16-month period. Three factors influence riparian zone hydrological functioning at the site: 1) the nature of water contributions from upland sources, 2) riparian zone soil texture, and 3) the location of a preWisconsinan till unit. When the uplands are contributing water to the riparian zone a shallow water table is found near the hillslope and ground water flows from the hillslope to the stream. Conversely, when upland contributions cease a large water table drop occurs and ground water flows in a downvalley direction. Fine textured soils near the hillslope result in shallow water tables and small ground water fluxes. Hydrometric data, water chemistry, and statistical analyses suggest water from an intertill layer adjacent to the site is the primary source of water to the site. NO3- concentrations decreased in ground water flow in the riparian zone suggesting the site is removing nutrients. A preWisconsinan glacial till deposit at shallow depths in the riparian zone limits ground water flow to horizontal flow paths. Overall, the hydrologic functioning of the site agrees well with riparian zone conceptual models (Vidon and Hill, 2004a; Vidon and Hill, 2004b; Devito et al., 1996; Hill, 2000; Baker et al., 2001; Burt et al., 2002). The results of this study are important additions towards conceptualizing riparian zone hydrologic functioning.Item THE INFLUENCE OF SEASON, FLOW REGIME, AND WATERSHED LAND USE AND LAND COVER ON NUTRIENT DELIVERY TO TWO RAPIDLY URBANIZING WATERSHEDS IN CENTRAL INDIANA, USA(2007-03-20T15:13:04Z) Casey, Leda René; Tedesco, Lenore P.; Vidon, Philippe G.; Wilson, Jeffrey S. (Jeffrey Scott), 1967-This study explores relationships between temperate stream geochemistry and watershed land cover in two temperate streams, Fishback Creek and School Branch Creek, located in a rapidly urbanizing area on the northwest side of Indianapolis in Eagle Creek Watershed, Indiana. The temporal and spatial patterns of NO3-N, PO4, DOC, SiO2, Cl-, and Na+ were assessed to understand the influence of land cover on the magnitude and timing of water, chemical, and nutrient delivery to streams. Results of the study indicate that the influences of different land cover types on water delivery to streams and in-stream water quality vary seasonally and with respect to flow regime, that urbanization may result in decreased nitrate input, and that phosphate and dissolved organic carbon concentrations will likely remain constant as the watershed is developed. Results also indicate that riparian buffer downstream of intense agriculture lands dilutes high agricultural NO3-N concentrations, but not enough to return in-stream concentrations to natural levels.Item ASSESSING THE ROLE OF GEOLOGIC SETTING ON THE HYDROLOGY AND GROUND WATER GEOCHEMISTRY OF FENS IN THE GLACIATED MIDWESTERN UNITED STATES(2007-04-09T15:32:10Z) Graves, Dustin; Tedesco, Lenore P.; Vidon, Philippe G.; Jacinthe, Pierre-AndreABSTRACT Dustin Graves ASSESSING THE ROLE OF GEOLOGIC SETTING ON THE HYDROLOGY AND GROUND WATER GEOCHEMISTRY OF FENS IN THE GLACIATED MIDWESTERN UNITED STATES A water quality investigation of several fens located in the temperate glaciated Midwestern United States, near the southern limit of fen occurrence, was conducted to assess the role of geologic setting on the hydrogeochemical signature of fens and to compare hydrogeochemistry of fens located in different geographic and geologic settings. The five studied fens, located in the Central Till Plain physiographic region of Indiana, receive ground water sourced from glacial tills with very similar petrologic composition. These wetlands are hydrogeomorphically classified as slope wetlands with dominant ground water input. More specifically, these sites are inter-till / intra-till type fens (Type Ia and Ib) or outwash terrace type fens (Type II). Shallow ground water was collected just prior to surface interception (source water), and again after discharging into each fen (fen water) and measured for a suite of cations (Ca2+, Mg2+, K+, Na+) and anions (HCO3- SO42-, NO3-, NO2-, PO43-, and Cl-). Fen water hydroperiods showed similar dynamics, despite some variation in the hydrologic input of these systems (source water). Central Indiana fens are recognized as Ca2+, Mg2+, and HCO3- dominated systems. Fen water showed substantial evolution from source water at each study site, evidently the result of carbonate and gypsum dissolution dynamics. However, when only fen water is analyzed, results suggest that ground water of the southern fens represents geochemical similarity, with the exception of anthropogenic influence. The greatest geochemical variation among central Indiana fens can be attributed to Na+ and Cl-, which has been linked to road salt contamination at two of the study sites. This hydrogeochemical study also reveals that fens (slope wetlands) within this particular geologic setting of central Indiana show strong geochemical similarities to fens located throughout the temperate Northern Hemisphere. However, statistical analyses provide evidence that the parameters of Ca2+, HCO3-, and SO42- account for the greatest variation among these wetland communities, suggesting that calcium carbonate and gypsum dissolution dynamics are primarily fen specific while other parameters remain relatively homogenous across a wide geographical range. Lenore P. Tedesco, Ph. D.Item USING AIRBORNE HYPERSPECTRAL IMAGERY TO ESTIMATE CHLOROPHYLL A AND PHYCOCYANIN IN THREE CENTRAL INDIANA MESOTROPHIC TO EUTROPHIC RESERVOIRS(2007-08-08T15:35:17Z) Sengpiel, Rebecca Elizabeth; Lin, Li; Tedesco, Lenore P.; Wilson, Jeffrey S. (Jeffrey Scott), 1967-This thesis presents the results of an analysis of predicting phytoplankton pigment concentrations (chlorophyll a and phycocyanin) from remotely sensed imagery. Hyperspectral airborne and hand-held reflectance spectra were acquired on three reservoirs (Geist, Morse and Eagle Creek) in Central Indiana, USA. Concurrent with the reflectance acquisition, in situ samples were collected and analyzed in laboratories to quantify the pigment concentration and other water quality parameters. The resultant concentration was then linked to Airborne Imaging Spectrometer for Applications (AISA) reflectance spectra for the sampling stations to develop predictive models. AISA reflectance spectra were extracted from the imagery which had been processed for radiometric calibration and geometric correction. Several previously published algorithms were examined for the estimation of pigment concentration from the spectra. High coefficients of determination were achieved for predicting chlorophyll a in two of the three reservoirs (Geist R2 = 0.712, Morse R2 = 0.895 and Eagle Creek Reservoir R2 = 0.392). This situation was similar for PC prediction, where two of the three reservoirs had high coefficients of determination between pigment concentration and reflectance (Geist R2 = 0.805, Morse R2 = 0.878 and Eagle Creek Reservoir R2 = 0.316). The results of this study show that reflectance spectra collected with an airborne hyperspectral imager are statistically significant, p < 0.03, in predicting chlorophyll a and phycocyanin pigment concentration in all three reservoirs in this study without the consideration of other parameters. The algorithms were then applied to the AISA image to generate high spatial resolution (1 m2) maps of Chlorophyll a and Phycocyanin distribution for each reservoir.Item THE IMPACT OF STORM CHARACTERISTICS AND LAND USE ON NUTRIENT EXPORT IN TWO GLACIATED WATERSHEDS IN CENTRAL INDIANA, USA(2007-09-18T17:29:39Z) Wagner, Laura E.; Vidon, Philippe G.; Tedesco, Lenore P.; Licht, Kathy J.This study investigated nutrient export during three spring storm events in two different land use watersheds (agricultural and mixed land use) in a glacial till landscape of the Midwestern, USA. The objectives of the study were: (1) to determine how land use affects water, nitrate, soluble reactive phosphorus (SRP) and dissolved organic carbon (DOC) delivery (timing, amount) to streams during spring storms in two central Indiana watersheds with contrasting land use; and (2) to determine nitrate, SRP and DOC flow pathways to streams during spring storms. High frequency stream sampling of nutrients and cations, coupled with hydrograph separations using δ18O, was used to identify water flow pathways and event and pre-event water contributions to the streams. Data indicate land use and storm characteristics play a role in the export of water and nutrients. In the agricultural watershed (Watershed A), the storm hydrograph is dominated by pre-event water, whereas the mixed land use watershed (Watershed M) storm hydrograph is more event water dominated. Watershed A also contains higher nutrient concentrations, especially nitrate. High bulk precipitation and greater maximum intensity export more nitrate, SRP, and DOC to the streams. Results also indicate nitrate, DOC, and SRP concentrations display distinct temporal patterns during spring storm events. DOC concentration increased with stormflow and peaked on the rising limb/with maximum discharge regardless of land use or storm event. In Watershed A, SRP concentration followed a similar pattern to DOC during small storms; therefore they are believed to be exported together with flushing of saturated near-surface soil waters via macropores/overland flow. However, SRP likely has multiple flowpaths, one dominated over another depending on the storm. Nitrate concentrations matched Ca2+, Mg2+, and Na+ trajectories and decreased with stormflow, suggesting a tile drain/subsurface flowpath. Nitrate and SRP peak concentrations are delayed relative to DOC in Watershed M. The wet retention ponds in the headwaters are believed to delay the stormflow response, and therefore, the delivery of nutrients to the stream.Item Internal Cycling in an Urban Drinking Water Reservoir(2007-10-12T18:43:19Z) Raftis, Robyn R.; Filippelli, Gabriel M.; Souch, Catherine; Tedesco, Lenore P.The focus of this study was to document phosphorus (P) and metal cycling in the Eagle Creek Reservoir (ECR), located in Indianapolis, central Indiana. Eagle Creek Reservoir serves the drinking water needs of over 80,000 residents. Within the last several years, algal blooms have created stress to the local treatment facility. The objective of this study was to examine how P cycling from oxygen deprived bottom sediments affects the algal bloom productivity. As such, cores were retrieved from different water depths (7 and 16 m) from portions of the reservoir where high surficial concentrations of organic matter and P were found to occur. The dried samples were analyzed for P, sulfur, iron, barium, cadmium, copper, lead, and zinc, using a strong acid digestion technique. The samples were also analyzed for iron-bound P (Fe-P), authigenic P (A-P), detrital P (D-P), organic P (O-P), reducible iron, and reducible manganese, using a sequential extraction technique. The results from the study showed moisture contents ranged from 16 to 76% and organic matter contents ranged from 2 to 12 wt%. The dry bulk densities were determined to be between 0.27 and 1.68 g cm3. The average percentages of P in ECS-1, as determined by the sequential extraction method, were as follows: Fe-P, 66.2%; A-P, 8.1%; D-P, 4.8%; and O-P, 20.9%. The average percentages of P in ECS-3, as determined by the sequential extraction method, were as follows: Fe-P, 77.0%; A-P, 6.5%; D-P, 2.8%; and O-P, 16.7%. To determine relationships between elements, correlations were calculated. When looking as the relationships between the P fractions and reducible Fe, differences were observed between the different water depths. There was less correlation between reducible Fe and Fe-P, and between O-P and Fe-P, in ECS-3, indicating that Fe-P is more efficiently dissolved and recycled in the deep portion of ECR. The study shows that the Fe-P flux, caused by the iron redox cycle, is persistent and will continue to influence algal bloom productivity in the deeper portions of ECR.Item INVASIVE SPECIES AND PANNE ECOSYSTEMS: THE EFFECTS OF ATMOSPHERIC POLLUTION(2008-04-10T14:30:08Z) Nazareth, Cheryl; Filippelli, Gabriel M.; Souch, Catherine J.; Rosenberg, Gary D.Pannes are rare intradunal wetlands. Though small, they are known to exhibit extremely diverse and sensitive vegetation and are home to a number of reptile and amphibian species. In the United States, pannes are known to occur only around the Great Lakes Basin and Cape Cod. At Indiana Dunes National Lakeshore, the fifteen known pannes have an unusually large variety of plant species for such a small geographic area and provide habitat for plant species found nowhere else in Indiana. However, these sensitive ecosystems have been exposed to over a century of atmospheric pollutants from the surrounding steel and coal industries. Since 1986, the native vegetation of the area is slowly being replaced by invasive species like Phragmites australis and Typha spp. This study attempts to explain the shift in vegetation. Pannes in two other locations, at a distance from the industrial complex, were used as control sites as they were not expected to be exposed to the same levels of heavy metal concentrations. Four of the fifteen pannes at the Indiana Dunes National Lakeshore, two of the four pannes at Sleeping Bear Dunes National Lakeshore, Michigan, and two of the three pannes at Warren Dunes State Park, Michigan, were studied, resulting in a total of eight pannes. The pannnes were stratified and sampled by hydroperiod. Surface soil samples and sediments at depth, were recovered from each of the pannes considered in this study and analyzed for heavy metal, phosphorus, carbon and nitrogen content. Results show that high levels of organic matter coupled with high nutrients and high metals, in the soil, are a combination that may be considered a risk factor for future invasion of pannes by invasive species. It appears to be difficult for the native vegetation to deal with the high metals and high nutrients which are deleterious to the native vegetation and facilitate establishment of invasive vegetation which is more tolerant to the altered geochemical conditions.Item ROCK, TILL, AND ICE: A PROVENANCE STUDY OF THE BYRD GLACIER AND THE CENTRAL AND WESTERN ROSS SEA, ANTARCTICA(2008-07-01T19:24:32Z) Palmer, Emerson Fowler; Licht, Kathy J.Petrography of the sand fraction, particle size analysis, and detrital zircon U/Pb isotope data, and pebble count data were collected from Byrd Glacier moraines and central/western Ross Sea till in order to study the glacially-driven sedimentological dynamics of the Byrd Glacier and to trace material transported from the Byrd Glacier into the Ross embayment. Most of the petrographic data show evidence of local derivation with the exception of the sites from the Lonewolf Nunataks as indicated by exotic rock types within the sand and pebble fractions. This, in conjunction with particle-size data of the samples from the Lonewolf Nunataks indicate that material from underneath the East Antarctic Ice Sheet (EAIS) is being transported to the surface and deposited in this area. The U/Pb ages of zircons from the Byrd Glacier show dominant populations of Ross to Pan-African ages (~533 - 610 Ma) with varying populations of older (Grenville to Archean) zircons. Late Precambrian (~588 – 610 Ma) aged detrital zircons in samples from the head of the Byrd Glacier are older than other dated grains found in the vicinity and may be evidence of early development of the Ross belt or represent evidence of sub-glacial extension of the Mozambique structure found in Dronning Maud Land. The west central Ross Sea till samples have a variety of mineral and lithic fragments that include a dominant population of polymict at certain depth intervals. Detrital zircon data suggests the potential provenance of two of these intervals may be derived from Marie Byrd Land and possibly the Byrd Glacier. Using sand petrography and U/Pb detrital zircon age dating, positive correlation was found between specific samples from the head of the Byrd Glacier and the western Ross Sea. The ice-sheet flow models of Stuiver et al. (1981), Licht and Fastook (1998), and Licht et al. (2005) each show potential support from aspects of this study. It is possible that dynamic ice-flow regime changes of the West and East Antarctic Ice Sheets into the Ross Sea may have occurred some time during the LGM as suggested by geochemical and petrographical evidence found within intervals of central and western Ross Sea cores.Item PALEOPRODUCTIVITY VARIATIONS IN THE EASTERN CENTRAL EQUATORIAL PACIFIC OCEAN ON GLACIAL TIMESCALES(2008-08-22T14:19:57Z) Hale, Sarah Beth; Filippelli, Gabriel M.; Licht, Kathy J.; Swope, R. JefferyPaleoproductivity records during the late Pleistocene are sparse. The equatorial Pacific and the Southern Ocean are collectively responsible for the majority of the new production in the oceans. The nutrient and carbon mass balances of these regions must be constrained in order to fully understand net global biological productivity on glacial timescales. The geochemistry of two east-central equatorial Pacific Ocean cores (02° 33.48 N; 117° 55.06 W) and (00° 15.42 S; 113° 00.57 W) are used to examine changes in biological productivity due to nutrient upwelling on glacial timescales during the Pleistocene. The cores were recovered in March 2006 on the AMAT03 cruise, a site survey cruise for IODP Proposal 626. The total concentrations of Ca, Ti, Fe, Al, P, Ba, S, Mg, Sr, Zn and Mn were determined by a total sediment digestion followed by analysis by inductively coupled plasma-atomic emission spectrometry (ICP). Original solid forms of P for 34 evenly spaced samples throughout one core were determined using the P Sequential Extraction technique. This study is attempting to compare upwelling and productivity records by determining temporal records of nutrient proxies, using Latimer and Filippelli (2006) which focused on the Southern Ocean. Equatorial upwelling and Southern Ocean upwelling both appear to exhibit strong glacial timescale variability. The P geochemistry results indicate that the P signal is largely biological. The equatorial Pacific evidence, in accordance with Southern Ocean patterns, supports a nutrient budget-driven productivity signal over time. Gabriel M. Filippelli, Ph. D, Committee ChairItem Using satellite hyperspectral imagery to map soil organic matter, total nitrogen and total phosphorus(2008-10-09T17:57:44Z) Zheng, Baojuan; Li, Lin; Jacinthe, Pierre-Andre; Filippelli, Gabriel M.Up-to-date and accurate information on soil properties is important for precision farming and environmental management. The spatial information of soil properties allows adjustments of fertilizer applications to be made based on knowledge of local field conditions, thereby maximizing agricultural productivity and minimizing the risk of environmental pollution. While conventional soil sampling procedures are labor-intensive, time-consuming and expensive, remote sensing techniques provide a rapid and efficient tool for mapping soil properties. This study aimed at examining the capacity of hyperspectral reflectance data for mapping soil organic matter (SOM), total nitrogen (N) and total phosphorus (P). Soil samples collected from Eagle Creek Watershed, Cicero Creek Watershed, and Fall Creek Watershed were analyzed for organic matter content, total N and total P; their corresponding spectral reflectance was measured in the laboratory before and after oven drying and in the field using Analytical Spectral Devices spectrometer. Hyperion images for each of the watersheds were acquired, calibrated and corrected and Hyperion image spectra for individual sampled sites were extracted. These hyperspectral reflectance data were related to SOM, total N and total P concentration through partial least squares (PLS) regressions. The samples were split into two datasets: one for calibration, and the other for validation. High PLS performance was observed during the calibration for SOM and total N regardless of the type of the reflectance spectra, and for total P with Hyperion image spectra. The validation of PLS models was carried out with each type of reflectance to assess their predictive power. For laboratory reflectance spectra, PLS models of SOM and total N resulted in higher R2 values and lower RMSEP with oven-dried than those with field-moist soils. The results demonstrate that soil moisture degrades the performance of PLS in estimating soil constituents with spectral reflectance. For in-situ field spectra, PLS estimated SOM with an R2 of 0.74, N with an R2 of 0.79, and P with an R2 of 0.60. For Hyperion image spectra, PLS predictive models yielded an R2 of 0.74 between measured and predicted SOM, an R2 of 0.72 between measured and predicted total N, and an R2 of 0.67 between measured and predicted total P. These results reveal slightly decreased model performance when shifting from laboratory-measured spectra to satellite image spectra. Regardless of the spectral data, the models for estimating SOM and total N consistently outperformed those for estimating total P. These results also indicate that PLS is an effective tool for remotely estimating SOM, total N and P in agricultural soils, but more research is needed to improve the predictive power of the model when applied to satellite hyperspectral imagery.