- Browse by Author
Browsing by Author "Pankajakshan, Divya"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Advanced Scaffolds for Dental Pulp and Periodontal Regeneration(Elsevier, 2017-10) Bottino, Marco C.; Pankajakshan, Divya; Nör, Jacques E.; Biomedical Sciences and Comprehensive Care, School of DentistryNo current therapy promotes root canal disinfection and regeneration of the pulp-dentin complex in cases of pulp necrosis. Antibiotic pastes used to eradicate canal infection negatively affect stem cell survival. Three-dimensional easy-to-fit antibiotic-eluting nanofibers, combined with injectable scaffolds, enriched or not with stem cells and/or growth factors, may increase the likelihood of achieving predictable dental pulp regeneration. Periodontitis is an aggressive disease that impairs the integrity of tooth-supporting structures and may lead to tooth loss. The latest advances in membrane biomodification to endow needed functionalities and technologies to engineer patient-specific membranes/constructs to amplify periodontal regeneration are presented.Item Clindamycin-modified Triple Antibiotic Nanofibers: A Stain-free Antimicrobial Intracanal Drug Delivery System(Elsevier, 2018-01) Karczewski, Ashley; Feitosa, Sabrina A.; Hamer, Ethan I.; Pankajakshan, Divya; Gregory, Richard L.; Spolnik, Kenneth J.; Bottino, Marco C.; Biomedical Sciences and Comprehensive Care, School of DentistryINTRODUCTION: A biocompatible strategy to promote bacterial eradication within the root canal system after pulpal necrosis of immature permanent teeth is critical to the success of regenerative endodontic procedures. This study sought to synthesize clindamycin-modified triple antibiotic (metronidazole, ciprofloxacin, and clindamycin [CLIN]) polymer (polydioxanone [PDS]) nanofibers and determine in vitro their antimicrobial properties, cell compatibility, and dentin discoloration. METHODS: CLIN-only and triple antibiotic CLIN-modified (CLIN-m, minocycline-free) nanofibers were processed via electrospinning. Scanning electron microscopy, Fourier-transform infrared spectroscopy (FTIR), and tensile testing were performed to investigate fiber morphology, antibiotic incorporation, and mechanical strength, respectively. Antimicrobial properties of CLIN-only and CLIN-m nanofibers were assessed against several bacterial species by direct nanofiber/bacteria contact and over time based on aliquot collection up to 21 days. Cytocompatibility was measured against human dental pulp stem cells. Dentin discoloration upon nanofiber exposure was qualitatively recorded over time. The data were statistically analyzed (P < .05). RESULTS: The mean fiber diameter of CLIN-containing nanofibers ranged between 352 ± 128 nm and 349 ± 128 nm and was significantly smaller than PDS fibers. FTIR analysis confirmed the presence of antibiotics in the nanofibers. Hydrated CLIN-m nanofibers showed similar tensile strength to antibiotic-free (PDS) nanofibers. All CLIN-containing nanofibers and aliquots demonstrated pronounced antimicrobial activity against all bacteria. Antibiotic-containing aliquots led to a slight reduction in dental pulp stem cell viability but were not considered toxic. No visible dentin discoloration upon CLIN-containing nanofiber exposure was observed. CONCLUSIONS: Collectively, based on the remarkable antimicrobial effects, cell-friendly, and stain-free properties, our data suggest that CLIN-m triple antibiotic nanofibers might be a viable alternative to minocycline-based antibiotic pastes.Item Curcumin—A Natural Medicament for Root Canal Disinfection: Effects of Irrigation, Drug Release, and Photoactivation(Elsevier, 2019-11) Sotomil, Julian M.; Münchow, Eliseu A.; Pankajakshan, Divya; Spolnik, Kenneth J.; Ferreira, Jessica A.; Gregory, Richard L.; Bottino, Marco C.; Prosthodontics, School of DentistryIntroduction Curcumin incorporation into polymeric fibers was tested for its antimicrobial properties and potential use in root canal disinfection. Methods Curcumin-modified fibers were processed via electrospinning and tested against a 7-day old established Actinomyces naeslundii (An) biofilm. The medicaments tested were as follows: curcumin-modified fibers at 2.5 and 5.0 mg/mL, curcumin-based irrigant at 2.5 and 5.0 mg/mL, saline solution (negative control), and the following positive controls: 2% chlorhexidine, 1% NaOCl, and triple antibiotic paste (TAP, 1 mg/mL). All medicaments, except for the positive controls, were allocated according to the light exposure protocol: photoactivation with an LED every 30 s for 4 min or without photoactivation. After treatment, the medicaments were removed and 1 mL of saline solution was added; the biofilm was scraped from the well and used to prepare a 1:2000 dilution. Spiral plating was done using anaerobic blood agar plates. After 24 h, colony-forming units (CFU/mL, n=11/group) were counted to determine the antimicrobial effects. Results Data exhibited significant antimicrobial effects on positive control groups, followed by the curcumin irrigants, and lastly, the photoactivated curcumin-modified fibers. There was a significant reduction of viable bacteria in curcumin-based irrigants, which was greater than the TAP-treated group. Curcumin-free fibers, saline, and the non-photoactivated curcumin-modified fibers did not display antimicrobial activity. Conclusions Curcumin seems to be a potential alternative to TAP when controlling infection, but it requires a minimal concentration (2.5 mg/mL) to be effective. Photoactivation of curcumin-based medicaments seems to be essential to obtain greater antibiofilm activity.Item Dimensionally stable and bioactive membrane for guided bone regeneration: An in vitro study(Wiley Blackwell (John Wiley & Sons), 2016-04) Rowe, Matthew J.; Kamocki, Krzysztof; Pankajakshan, Divya; Li, Ding; Bruzzaniti, Angela; Thomas, Vinoy; Blanchard, Steve B.; Bottino, Marco C.; Department of Biomedical and Applied Sciences, School of DentistryComposite fibrous electrospun membranes based on poly(dl-lactide) (PLA) and poly(ε-caprolactone) (PCL) were engineered to include borate bioactive glass (BBG) for the potential purposes of guided bone regeneration (GBR). The fibers were characterized using scanning and transmission electron microscopies, which respectively confirmed the submicron fibrous arrangement of the membranes and the successful incorporation of BBG particles. Selected mechanical properties of the membranes were evaluated using the suture pullout test. The addition of BBG at 10 wt % led to similar stiffness, but more importantly, it led to a significantly stronger (2.37 ± 0.51 N mm) membrane when compared with the commercially available Epiguide® (1.06 ± 0.24 N mm) under hydrated conditions. Stability (shrinkage) was determined after incubation in a phosphate buffer solution from 24 h up to 9 days. The dimensional stability of the PLA:PCL-based membranes with or without BBG incorporation (10.07-16.08%) was similar to that of Epiguide (14.28%). Cell proliferation assays demonstrated a higher rate of preosteoblasts proliferation on BBG-containing membranes (6.4-fold) over BBG-free membranes (4- to 5.8-fold) and EpiGuide (4.5-fold), following 7 days of in vitro culture. Collectively, our results demonstrated the ability to synthesize, via electrospinning, stable, polymer-based submicron fibrous BBG-containing membranes capable of sustaining osteoblastic attachment and proliferation-a promising attribute in GBR.Item Injectable Highly Tunable Oligomeric Collagen Matrices for Dental Tissue Regeneration(ACS, 2020-01) Pankajakshan, Divya; Voytik-Harbin, Sherry L.; Nör, Jacques E.; Bottino, Marco C.; Biomedical Sciences and Comprehensive Care, School of DentistryCurrent stem cell transplantation approaches lack efficacy, because they limit cell survival and retention and, more importantly, lack a suitable cellular niche to modulate lineage-specific differentiation. Here, we evaluate the intrinsic ability of type I oligomeric collagen matrices to modulate dental pulp stem cells (DPSCs) endothelial and odontogenic differentiation as a potential stem cell-based therapy for regenerative endodontics. DPSCs were encapsulated in low-stiffness (235 Pa) and high-stiffness (800 Pa) oligomeric collagen matrices and then evaluated for long-term cell survival, as well as endothelial and odontogenic differentiation following in vitro cell culture. Moreover, the effect of growth factor incorporation, i.e., vascular endothelial growth factor (VEGF) into 235 Pa oligomeric collagen or bone morphogenetic protein (BMP2) into the 800 Pa oligomeric collagen counterpart on endothelial or odontogenic differentiation of encapsulated DPSCs was investigated. DPSCs-laden oligomeric collagen matrices allowed long-term cell survival. Real time polymerase chain reaction (RT-PCR) data showed that the DPSCs cultured in 235 Pa matrices demonstrated an increased expression of endothelial markers after 28 days, and the effect was enhanced upon VEGF incorporation. There was a significant increase in alkaline phosphatase (ALP) activity at Day 14 in the 800 Pa DPSCs-laden oligomeric collagen matrices, regardless of BMP2 incorporation. However, Alizarin S data demonstrated higher mineralization by Day 21 and the effect was amplified in BMP2-modified matrices. Herein, we present key data that strongly support future research aimed at clinical translation of an injectable oligomeric collagen system for delivery and fate regulation of DPSCs to enable pulp and dentin regeneration at specific locations of the root canal system.Item Synthesis and characterization of CaO-loaded electrospun matrices for bone tissue engineering(Springer, 2016-11) Münchow, Eliseu A.; Pankajakshan, Divya; Albuquerque, Maria T. P.; Kamocki, Krzysztof; Piva, Evandro; Gregory, Richard L.; Bottino, Marco C.; Biomedical and Applied Sciences, School of DentistryObjectives To synthesize and characterize biodegradable polymer-based matrices loaded with CaO-nanoparticles for osteomyelitis treatment and bone tissue engineering. Materials and methods Poly(ε-caprolactone) (PCL) and PCL/gelatin (1:1, w/w) solutions containing CaO nanoparticles were electrospun into fibrous matrices. Scanning (SEM) and transmission (TEM) electron microscopy, Fourier Transformed Infrared (FTIR), Energy Dispersive X-ray Spectroscopy (EDS), contact angle (CA), tensile testing, and antibacterial activity (agar diffusion assay) against Staphylococcus aureus (S. aureus) were performed. Osteoprecursor cell (MC3T3-E1) response (i.e., viability and alkaline phosphatase expression/ALP) and infiltration into the matrices were evaluated. Results CaO nanoparticles were successfully incorporated into the fibers, with the median fiber diameter decreasing after CaO incorporation. The CA decreased with the 0addition of CaO, and the presence of gelatin made the matrix very hydrophilic (CA = 0°). Increasing CaO concentrations progressively reduced the mechanical properties (p≤0.030). CaO-loaded matrices did not display consistent antibacterial activity. MC3T3-E1 cell viability demonstrated the highest levels for CaO-loaded matrices containing gelatin after 7 days in culture. An increased ALP expression was consistently seen for PCL/CaO matrices when compared to PCL and gelatin-containing counterparts. Conclusions Despite inconsistent antibacterial activity, CaO nanoparticles can be effectively loaded into PCL or PCL/gelatin fibers without negatively affecting the overall performance of the matrices. More importantly, CaO incorporation enhanced cell viability as well as differentiation capacity, as demonstrated by an increased ALP expression. Clinical significance CaO-loaded electrospun matrices show potential for applications in bone tissue engineering.Item Tetracycline-incorporated polymer nanofibers as a potential dental implant surface modifier(Wiley, 2017-10) Bottino, Marco C.; Münchow, Eliseau A.; Albuquerque, Maria T.P.; Kamocki, Krzysztof; Shahi, Rana; Gregory, Richard L.; Chu, Tien-Min G.; Pankajakshan, Divya; Biomedical Sciences and Comprehensive Care, School of DentistryThis study investigated the antimicrobial and osteogenic properties of titanium (Ti) disks superficially modified with tetracycline (TCH)-incorporated polymer nanofibers. The experiments were carried out in two phases. The first phase dealt with the synthesis and characterization (i.e., morphology, mechanical strength, drug release, antimicrobial activity, and cytocompatibility) of TCH-incorporated fibers. The second phase was dedicated to evaluating both the antimicrobial and murine-derived osteoprecursor cell (MC3T3-E1) response of Ti-modified with TCH-incorporated fibers. TCH was successfully incorporated into the submicron-sized and cytocompatible fibers. All TCH-incorporated mats presented significant antimicrobial activity against periodontal pathogens. The antimicrobial potential of the TCH-incorporated fibers-modified Ti was influenced by both the TCH concentration and bacteria tested. At days 5 and 7, a significant increase in MC3T3-E1 cell number was observed for TCH-incorporated nanofibers-modified Ti disks when compared to that of TCH-free nanofibers-modified Ti-disks and bare Ti. A significant increase in alkaline phosphatase (ALP) levels on the Ti disks modified with TCH-incorporated nanofiber on days 7 and 14 was seen, suggesting that the proposed surface promotes early osteogenic differentiation. Collectively, the data suggest that TCH-incorporated nanofibers could function as an antimicrobial surface modifier and osteogenic inducer for Ti dental implants.Item Triple Antibiotic Polymer Nanofibers for Intracanal Drug Delivery: Effects on Dual Species Biofilm and Cell Function(Elsevier, 2016-10) Pankajakshan, Divya; Albuquerque, Maria T.P.; Evans, Joshua D.; Kamocka, Malgorzata M.; Gregory, Richard L.; Bottino, Marco C.; Biomedical and Applied Sciences, School of DentistryIntroduction Root canal disinfection and the establishment of an intracanal microenvironment conducive to the proliferation/differentiation of stem cells play a significant role in regenerative endodontics. This study was designed to (1) investigate the antimicrobial efficacy of triple antibiotic–containing nanofibers against a dual-species biofilm and (2) evaluate the ability of dental pulp stem cells (DPSCs) to adhere to and proliferate on dentin upon nanofiber exposure. Methods Seven-day-old dual-species biofilm established on dentin specimens was exposed for 3 days to the following: saline (control), antibiotic-free nanofibers (control), and triple antibiotic–containing nanofibers or a saturated triple antibiotic paste (TAP) solution (50 mg/mL in phosphate buffer solution). Bacterial viability was assessed using the LIVE/DEAD assay (Molecular Probes, Inc, Eugene, OR) and confocal laser scanning microscopy. For cyto-compatibility studies, dentin specimens after nanofiber or TAP (1 g/mL in phosphate buffer solution) exposure were evaluated for cell adhesion and spreading by actin-phalloidin staining. DPSC proliferation was assessed on days 1, 3, and 7. Statistics were performed, and significance was set at the 5% level. Results Confocal laser scanning microscopy showed significant bacterial death upon antibiotic-containing nanofiber exposure, differing significantly (P < .05) from antibiotic-free fibers and the control (saline). DPSCs showed enhanced adhesion/spreading on dentin specimens treated with antibiotic-containing nanofibers when compared with its TAP counterparts. The DPSC proliferation rate was similar on days 1 and 3 in antibiotic-free nanofibers, triple antibiotic–containing nanofibers, and TAP-treated dentin. Proliferation was higher (9-fold) on dentin treated with antibiotic-containing nanofibers on day 7 compared with TAP. Conclusions Triple antibiotic–containing polymer nanofibers led to significant bacterial death, whereas they did not affect DPSC attachment and proliferation on dentin.