Dimensionally stable and bioactive membrane for guided bone regeneration: An in vitro study

Date
2016-04
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Wiley Blackwell (John Wiley & Sons)
Abstract

Composite fibrous electrospun membranes based on poly(dl-lactide) (PLA) and poly(ε-caprolactone) (PCL) were engineered to include borate bioactive glass (BBG) for the potential purposes of guided bone regeneration (GBR). The fibers were characterized using scanning and transmission electron microscopies, which respectively confirmed the submicron fibrous arrangement of the membranes and the successful incorporation of BBG particles. Selected mechanical properties of the membranes were evaluated using the suture pullout test. The addition of BBG at 10 wt % led to similar stiffness, but more importantly, it led to a significantly stronger (2.37 ± 0.51 N mm) membrane when compared with the commercially available Epiguide® (1.06 ± 0.24 N mm) under hydrated conditions. Stability (shrinkage) was determined after incubation in a phosphate buffer solution from 24 h up to 9 days. The dimensional stability of the PLA:PCL-based membranes with or without BBG incorporation (10.07-16.08%) was similar to that of Epiguide (14.28%). Cell proliferation assays demonstrated a higher rate of preosteoblasts proliferation on BBG-containing membranes (6.4-fold) over BBG-free membranes (4- to 5.8-fold) and EpiGuide (4.5-fold), following 7 days of in vitro culture. Collectively, our results demonstrated the ability to synthesize, via electrospinning, stable, polymer-based submicron fibrous BBG-containing membranes capable of sustaining osteoblastic attachment and proliferation-a promising attribute in GBR.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Rowe, M. J., Kamocki, K., Pankajakshan, D., Li, D., Bruzzaniti, A., Thomas, V., … Bottino, M. C. (2016). Dimensionally stable and bioactive membrane for guided bone regeneration: An in vitro study. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 104(3), 594–605. http://doi.org/10.1002/jbm.b.33430
ISSN
1552-4981
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Journal of Biomedical Materials Research. Part B, Applied Biomaterials
Rights
Publisher Policy
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}