Synthesis and characterization of CaO-loaded electrospun matrices for bone tissue engineering

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2016-11
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Springer
Abstract

Objectives To synthesize and characterize biodegradable polymer-based matrices loaded with CaO-nanoparticles for osteomyelitis treatment and bone tissue engineering.

Materials and methods Poly(ε-caprolactone) (PCL) and PCL/gelatin (1:1, w/w) solutions containing CaO nanoparticles were electrospun into fibrous matrices. Scanning (SEM) and transmission (TEM) electron microscopy, Fourier Transformed Infrared (FTIR), Energy Dispersive X-ray Spectroscopy (EDS), contact angle (CA), tensile testing, and antibacterial activity (agar diffusion assay) against Staphylococcus aureus (S. aureus) were performed. Osteoprecursor cell (MC3T3-E1) response (i.e., viability and alkaline phosphatase expression/ALP) and infiltration into the matrices were evaluated.

Results CaO nanoparticles were successfully incorporated into the fibers, with the median fiber diameter decreasing after CaO incorporation. The CA decreased with the 0addition of CaO, and the presence of gelatin made the matrix very hydrophilic (CA = 0°). Increasing CaO concentrations progressively reduced the mechanical properties (p≤0.030). CaO-loaded matrices did not display consistent antibacterial activity. MC3T3-E1 cell viability demonstrated the highest levels for CaO-loaded matrices containing gelatin after 7 days in culture. An increased ALP expression was consistently seen for PCL/CaO matrices when compared to PCL and gelatin-containing counterparts.

Conclusions Despite inconsistent antibacterial activity, CaO nanoparticles can be effectively loaded into PCL or PCL/gelatin fibers without negatively affecting the overall performance of the matrices. More importantly, CaO incorporation enhanced cell viability as well as differentiation capacity, as demonstrated by an increased ALP expression.

Clinical significance CaO-loaded electrospun matrices show potential for applications in bone tissue engineering.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Münchow, E. A., Pankajakshan, D., Albuquerque, M. T. P., Kamocki, K., Piva, E., Gregory, R. L., & Bottino, M. C. (2016). Synthesis and characterization of CaO-loaded electrospun matrices for bone tissue engineering. Clinical Oral Investigations, 20(8), 1921–1933. https://doi.org/10.1007/s00784-015-1671-5
ISSN
1432-6981
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Clinical oral investigations
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}