ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Molitoris, Bruce A."

Now showing 1 - 10 of 58
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury
    (BioMed Central, 2007-03-01) Mehta, Ravindra L.; Kellum, John A.; Shah, Sudhir V.; Molitoris, Bruce A.; Ronco, Claudio; Warnock, David G.; Levin, Adeera; Medicine, School of Medicine
    Introduction Acute kidney injury (AKI) is a complex disorder for which currently there is no accepted definition. Having a uniform standard for diagnosing and classifying AKI would enhance our ability to manage these patients. Future clinical and translational research in AKI will require collaborative networks of investigators drawn from various disciplines, dissemination of information via multidisciplinary joint conferences and publications, and improved translation of knowledge from pre-clinical research. We describe an initiative to develop uniform standards for defining and classifying AKI and to establish a forum for multidisciplinary interaction to improve care for patients with or at risk for AKI. Methods Members representing key societies in critical care and nephrology along with additional experts in adult and pediatric AKI participated in a two day conference in Amsterdam, The Netherlands, in September 2005 and were assigned to one of three workgroups. Each group's discussions formed the basis for draft recommendations that were later refined and improved during discussion with the larger group. Dissenting opinions were also noted. The final draft recommendations were circulated to all participants and subsequently agreed upon as the consensus recommendations for this report. Participating societies endorsed the recommendations and agreed to help disseminate the results. Results The term AKI is proposed to represent the entire spectrum of acute renal failure. Diagnostic criteria for AKI are proposed based on acute alterations in serum creatinine or urine output. A staging system for AKI which reflects quantitative changes in serum creatinine and urine output has been developed. Conclusion We describe the formation of a multidisciplinary collaborative network focused on AKI. We have proposed uniform standards for diagnosing and classifying AKI which will need to be validated in future studies. The Acute Kidney Injury Network offers a mechanism for proceeding with efforts to improve patient outcomes.
  • Loading...
    Thumbnail Image
    Item
    Adenoviral Vectors Expressing Human Endostatin–Angiostatin and Soluble Tie2: Enhanced Suppression of Tumor Growth and Antiangiogenic Effects in a Prostate Tumor Model
    (Elsevier, 2005-12-01) Raikwar, Sudhanshu P.; Temm, Constance J.; Raikwar, Nandita S.; Kao, Chinghai; Molitoris, Bruce A.; Gardner, Thomas A.; Urology, School of Medicine
    Angiogenesis is essential for prostate cancer development and metastasis. Antiangiogenic therapy targeting tumor neovasculature, therefore, represents a promising approach for prostate cancer treatment. We hypothesized that adenoviral-mediated delivery of a combination of antiangiogenic factors might have an enhanced antitumor response. We developed the adenoviral vectors Ad-hEndo-angio, expressing a unique, chimeric human endostatin–angiostatin fusion protein, and Ad-sTie2, expressing a soluble form of endothelium-specific receptor tyrosine kinase Tie2. Matrigel angiogenesis assays using Ad-hEndo-angio revealed significant inhibition of tubular network formation and endothelial sprouting compared to Ad-sTie2. In vivo studies in a bilateral PC-3 tumor xenograft model following either intratumoral or systemic administration of Ad-hEndo-angio led to enhanced tumor growth suppression compared to Ad-sTie2. A novel finding is that an intratumoral, combination therapy employing one-half the dose of Ad-hEndo-angio as well as Ad-sTie2 led to a complete regression of the injected, as well as the contralateral uninjected, tumor and prolonged the tumor-free survival in 80% of the animals. In addition, a novel, real-time, intravital imaging modality was used to monitor antiangiogenic responses following adenoviral-mediated gene transfer. These results suggest that a combinatorial antiangiogenic gene therapy approach involving Ad-hEndo-angio and Ad-sTie2 could become a novel form of treatment for localized human prostate cancer.
  • Loading...
    Thumbnail Image
    Item
    Albumin uptake and processing by the proximal tubule: physiological, pathological, and therapeutic implications
    (American Physiological Society, 2022) Molitoris, Bruce A.; Sandoval, Ruben M.; Yadav, Shiv Pratap S.; Wagner, Mark C.; Medicine, School of Medicine
    For nearly 50 years the proximal tubule (PT) has been known to reabsorb, process, and either catabolize or transcytose albumin from the glomerular filtrate. Innovative techniques and approaches have provided insights into these processes. Several genetic diseases, nonselective PT cell defects, chronic kidney disease (CKD), and acute PT injury lead to significant albuminuria, reaching nephrotic range. Albumin is also known to stimulate PT injury cascades. Thus, the mechanisms of albumin reabsorption, catabolism, and transcytosis are being reexamined with the use of techniques that allow for novel molecular and cellular discoveries. Megalin, a scavenger receptor, cubilin, amnionless, and Dab2 form a nonselective multireceptor complex that mediates albumin binding and uptake and directs proteins for lysosomal degradation after endocytosis. Albumin transcytosis is mediated by a pH-dependent binding affinity to the neonatal Fc receptor (FcRn) in the endosomal compartments. This reclamation pathway rescues albumin from urinary losses and cellular catabolism, extending its serum half-life. Albumin that has been altered by oxidation, glycation, or carbamylation or because of other bound ligands that do not bind to FcRn traffics to the lysosome. This molecular sorting mechanism reclaims physiological albumin and eliminates potentially toxic albumin. The clinical importance of PT albumin metabolism has also increased as albumin is now being used to bind therapeutic agents to extend their half-life and minimize filtration and kidney injury. The purpose of this review is to update and integrate evolving information regarding the reabsorption and processing of albumin by proximal tubule cells including discussion of genetic disorders and therapeutic considerations.
  • Loading...
    Thumbnail Image
    Item
    Altered O-glycomes of Renal Brush-Border Membrane in Model Rats with Chronic Kidney Diseases
    (MDPI, 2021-10-21) Yu, Aiying; Zhao, Jingfu; Zhong, Jieqiang; Wang, Junyao; Yadav, Shiv Pratap S.; Molitoris, Bruce A.; Wagner, Mark C.; Mechref, Yehia; Medicine, School of Medicine
    Chronic kidney disease (CKD) is defined as a decrease in renal function or glomerular filtration rate (GFR), and proteinuria is often present. Proteinuria increases with age and can be caused by glomerular and/or proximal tubule (PT) alterations. PT cells have an apical brush border membrane (BBM), which is a highly dynamic, organized, and specialized membrane region containing multiple glycoproteins required for its functions including regulating uptake, secretion, and signaling dependent upon the physiologic state. PT disorders contribute to the dysfunction observed in CKD. Many glycoprotein functions have been attributed to their N- and O-glycans, which are highly regulated and complex. In this study, the O-glycans present in rat BBMs from animals with different levels of kidney disease and proteinuria were characterized and analyzed using liquid chromatography tandem mass spectrometry (LC-MS/MS). A principal component analysis (PCA) documented that each group has distinct O-glycan distributions. Higher fucosylation levels were observed in the CKD and diabetic groups, which may contribute to PT dysfunction by altering physiologic glycoprotein interactions. Fucosylated O-glycans such as 1-1-1-0 exhibited higher abundance in the severe proteinuric groups. These glycomic results revealed that differential O-glycan expressions in CKD progressions has the potential to define the mechanism of proteinuria in kidney disease and to identify potential therapeutic interventions.
  • Loading...
    Thumbnail Image
    Item
    The archaeal Dps nanocage targets kidney proximal tubules via glomerular filtration
    (American Society for Clinical Investigation, 2019-09-03) Uchida, Masaki; Maier, Bernhard; Waghwani, Hitesh Kumar; Selivanovitch, Ekaterina; Pay, S. Louise; Avera, John; Yun, EJun; Sandoval, Ruben M.; Molitoris, Bruce A.; Zollman, Amy; Douglas, Trevor; Hato, Takashi; Medicine, School of Medicine
    Nature exploits cage-like proteins for a variety of biological purposes, from molecular packaging and cargo delivery to catalysis. These cage-like proteins are of immense importance in nanomedicine due to their propensity to self-assemble from simple identical building blocks to highly ordered architecture and the design flexibility afforded by protein engineering. However, delivery of protein nanocages to the renal tubules remains a major challenge because of the glomerular filtration barrier, which effectively excludes conventional size nanocages. Here, we show that DNA-binding protein from starved cells (Dps) — the extremely small archaeal antioxidant nanocage — is able to cross the glomerular filtration barrier and is endocytosed by the renal proximal tubules. Using a model of endotoxemia, we present an example of the way in which proximal tubule–selective Dps nanocages can limit the degree of endotoxin-induced kidney injury. This was accomplished by amplifying the endogenous antioxidant property of Dps with addition of a dinuclear manganese cluster. Dps is the first-in-class protein cage nanoparticle that can be targeted to renal proximal tubules through glomerular filtration. In addition to its therapeutic potential, chemical and genetic engineering of Dps will offer a nanoplatform to advance our understanding of the physiology and pathophysiology of glomerular filtration and tubular endocytosis.
  • Loading...
    Thumbnail Image
    Item
    ASN Presidential Address 2013: innovation and individualization--the path forward for nephrology
    (American Society for Nephrology, 2014-05) Molitoris, Bruce A.; Department of Medicine, IU School of Medicine
  • Loading...
    Thumbnail Image
    Item
    Beyond Biomarkers: Machine Learning in Diagnosing Acute Kidney Injury
    (Mayo Clinic, 2019-05) Molitoris, Bruce A.; Medicine, School of Medicine
  • Loading...
    Thumbnail Image
    Item
    Changes in the Expression of Renal Brush Border Membrane N-Glycome in Model Rats with Chronic Kidney Diseases
    (MDPI, 2021-11-11) Yu, Aiying; Zhao, Jingfu; Yadav, Shiv Pratap S.; Molitoris, Bruce A.; Wagner, Mark C.; Mechref, Yehia; Medicine, School of Medicine
    Chronic kidney disease (CKD) is defined by a reduced renal function i.e., glomerular filtration rate (GFR), and the presence of kidney damage is determined by measurement of proteinuria or albuminuria. Albuminuria increases with age and can result from glomerular and/or proximal tubule (PT) alterations. Brush-border membranes (BBMs) on PT cells play an important role in maintaining the stability of PT functions. The PT BBM, a highly dynamic, organized, specialized membrane, contains a variety of glycoproteins required for the functions of PT. Since protein glycosylation regulates many protein functions, the alteration of glycosylation due to the glycan changes has attracted more interests for a variety of disease studies recently. In this work, liquid chromatography-tandem mass spectrometry was utilized to analyze the abundances of permethylated glycans from rats under control to mild CKD, severe CKD, and diabetic conditions. The most significant differences were observed in sialylation level with the highest present in the severe CKD and diabetic groups. Moreover, high mannose N-glycans was enriched in the CKD BBMs. Characterization of all the BBM N-glycan changes supports that these changes are likely to impact the functional properties of the dynamic PT BBM. Further, these changes may lead to the potential discovery of glycan biomarkers for improved CKD diagnosis and new avenues for therapeutic treatments.
  • Loading...
    Thumbnail Image
    Item
    Conditional Myh9 and Myh10 inactivation in adult mouse renal epithelium results in progressive kidney disease
    (American Society for Clinical Investigation, 2020-11-05) Otterpohl, Karla L.; Busselman, Brook W.; Ratnayake, Ishara; Hart, Ryan G.; Hart, Kimberly R.; Evans, Claire M.; Phillips, Carrie L.; Beach, Jordan R.; Ahrenkiel, Phil; Molitoris, Bruce A.; Surendran, Kameswaran; Chandrasekar, Indra; Pathology and Laboratory Medicine, School of Medicine
    Actin-associated nonmuscle myosin II (NM2) motor proteins play critical roles in a myriad of cellular functions, including endocytosis and organelle transport pathways. Cell type–specific expression and unique subcellular localization of the NM2 proteins, encoded by the Myh9 and Myh10 genes, in the mouse kidney tubules led us to hypothesize that these proteins have specialized functional roles within the renal epithelium. Inducible conditional knockout (cKO) of Myh9 and Myh10 in the renal tubules of adult mice resulted in progressive kidney disease. Prior to overt renal tubular injury, we observed intracellular accumulation of the glycosylphosphatidylinositol-anchored protein uromodulin (UMOD) and gradual loss of Na+ K+ 2Cl– cotransporter from the apical membrane of the thick ascending limb epithelia. The UMOD accumulation coincided with expansion of endoplasmic reticulum (ER) tubules and activation of ER stress and unfolded protein response pathways in Myh9&10-cKO kidneys. We conclude that NM2 proteins are required for localization and transport of UMOD and loss of function results in accumulation of UMOD and ER stress–mediated progressive renal tubulointerstitial disease. These observations establish cell type–specific role(s) for NM2 proteins in regulation of specialized renal epithelial transport pathways and reveal the possibility that human kidney disease associated with MYH9 mutations could be of renal epithelial origin.
  • Loading...
    Thumbnail Image
    Item
    Defining the Intravital Renal Disposition of Fluorescence-Quenched Exenatide
    (American Chemical Society, 2023) Bryniarski, Mark A.; Sandoval, Ruben M.; Ruszaj, Donna M.; Fraser-McArthur, John; Yee, Benjamin M.; Yacoub, Rabi; Chaves, Lee D.; Campos-Bilderback, Silvia B.; Molitoris, Bruce A.; Morris, Marilyn E.; Medicine, School of Medicine
    Despite the understanding that renal clearance is pivotal for driving the pharmacokinetics of numerous therapeutic proteins and peptides, the specific processes that occur following glomerular filtration remain poorly defined. For instance, sites of catabolism within the proximal tubule can occur at the brush border, within lysosomes following endocytosis, or even within the tubule lumen itself. The objective of the current study was to address these limitations and develop methodology to study the kidney disposition of a model therapeutic protein. Exenatide is a peptide used to treat type 2 diabetes mellitus. Glomerular filtration and ensuing renal catabolism have been shown to be its principal clearance pathway. Here, we designed and validated a Förster resonance energy transfer-quenched exenatide derivative to provide critical information on the renal handling of exenatide. A combination of in vitro techniques was used to confirm substantial fluorescence quenching of intact peptide that was released upon proteolytic cleavage. This evaluation was then followed by an assessment of the in vivo disposition of quenched exenatide directly within kidneys of living rats via intravital two-photon microscopy. Live imaging demonstrated rapid glomerular filtration and identified exenatide metabolism occurred within the subapical regions of the proximal tubule epithelia, with subsequent intracellular trafficking of cleaved fragments. These results provide a novel examination into the real-time, intravital disposition of a protein therapeutic within the kidney and offer a platform to build upon for future work.
  • «
  • 1 (current)
  • 2
  • 3
  • 4
  • 5
  • 6
  • »
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University