Conditional Myh9 and Myh10 inactivation in adult mouse renal epithelium results in progressive kidney disease

If you need an accessible version of this item, please submit a remediation request.
Date
2020-11-05
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
American Society for Clinical Investigation
Abstract

Actin-associated nonmuscle myosin II (NM2) motor proteins play critical roles in a myriad of cellular functions, including endocytosis and organelle transport pathways. Cell type–specific expression and unique subcellular localization of the NM2 proteins, encoded by the Myh9 and Myh10 genes, in the mouse kidney tubules led us to hypothesize that these proteins have specialized functional roles within the renal epithelium. Inducible conditional knockout (cKO) of Myh9 and Myh10 in the renal tubules of adult mice resulted in progressive kidney disease. Prior to overt renal tubular injury, we observed intracellular accumulation of the glycosylphosphatidylinositol-anchored protein uromodulin (UMOD) and gradual loss of Na+ K+ 2Cl– cotransporter from the apical membrane of the thick ascending limb epithelia. The UMOD accumulation coincided with expansion of endoplasmic reticulum (ER) tubules and activation of ER stress and unfolded protein response pathways in Myh9&10-cKO kidneys. We conclude that NM2 proteins are required for localization and transport of UMOD and loss of function results in accumulation of UMOD and ER stress–mediated progressive renal tubulointerstitial disease. These observations establish cell type–specific role(s) for NM2 proteins in regulation of specialized renal epithelial transport pathways and reveal the possibility that human kidney disease associated with MYH9 mutations could be of renal epithelial origin.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Otterpohl KL, Busselman BW, Ratnayake I, et al. Conditional Myh9 and Myh10 inactivation in adult mouse renal epithelium results in progressive kidney disease. JCI Insight. 2020;5(21):e138530. Published 2020 Nov 5. doi:10.1172/jci.insight.138530
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
JCI Insight
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}