Altered O-glycomes of Renal Brush-Border Membrane in Model Rats with Chronic Kidney Diseases

If you need an accessible version of this item, please submit a remediation request.
Date
2021-10-21
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
MDPI
Abstract

Chronic kidney disease (CKD) is defined as a decrease in renal function or glomerular filtration rate (GFR), and proteinuria is often present. Proteinuria increases with age and can be caused by glomerular and/or proximal tubule (PT) alterations. PT cells have an apical brush border membrane (BBM), which is a highly dynamic, organized, and specialized membrane region containing multiple glycoproteins required for its functions including regulating uptake, secretion, and signaling dependent upon the physiologic state. PT disorders contribute to the dysfunction observed in CKD. Many glycoprotein functions have been attributed to their N- and O-glycans, which are highly regulated and complex. In this study, the O-glycans present in rat BBMs from animals with different levels of kidney disease and proteinuria were characterized and analyzed using liquid chromatography tandem mass spectrometry (LC-MS/MS). A principal component analysis (PCA) documented that each group has distinct O-glycan distributions. Higher fucosylation levels were observed in the CKD and diabetic groups, which may contribute to PT dysfunction by altering physiologic glycoprotein interactions. Fucosylated O-glycans such as 1-1-1-0 exhibited higher abundance in the severe proteinuric groups. These glycomic results revealed that differential O-glycan expressions in CKD progressions has the potential to define the mechanism of proteinuria in kidney disease and to identify potential therapeutic interventions.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Yu A, Zhao J, Zhong J, et al. Altered O-glycomes of Renal Brush-Border Membrane in Model Rats with Chronic Kidney Diseases. Biomolecules. 2021;11(11):1560. Published 2021 Oct 21. doi:10.3390/biom11111560
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Biomolecules
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}