- Browse by Author
Browsing by Author "Lawrence, Katie N."
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Dual Role of Electron-Accepting Metal-Carboxylate Ligands: Reversible Expansion of Exciton Delocalization and Passivation of Nonradiative Trap-States in Molecule-like CdSe Nanocrystals(ACS, 2016-10) Lawrence, Katie N.; Dutta, Poulami; Nagaraju, Mulpuri; Teunis, Meghan B.; Muhoberac, Barry B.; Sardar, Rajesh; Department of Chemistry & Chemical Biology, School of ScienceThis paper reports large bathochromic shifts of up to 260 meV in both the excitonic absorption and emission peaks of oleylamine (OLA)-passivated molecule-like (CdSe)34 nanocrystals caused by postsynthetic treatment with the electron accepting Cd(O2CPh)2 complex at room temperature. These shifts are found to be reversible upon removal of Cd(O2CPh)2 by N,N,N′,N′-tetramethylethylene-1,2-diamine. 1H NMR and FTIR characterizations of the nanocrystals demonstrate that the OLA remained attached to the surface of the nanocrystals during the reversible removal of Cd(O2CPh)2. On the basis of surface ligand characterization, X-ray powder diffraction measurements, and additional control experiments, we propose that these peak red shifts are a consequence of the delocalization of confined exciton wave functions into the interfacial electronic states that are formed from interaction of the LUMO of the nanocrystals and the LUMO of Cd(O2CPh)2, as opposed to originating from a change in size or reorganization of the inorganic core. Furthermore, attachment of Cd(O2CPh)2 to the OLA-passivated (CdSe)34 nanocrystal surface increases the photoluminescence quantum yield from 5% to an unprecedentedly high 70% and causes a 3-fold increase of the photoluminescence lifetime, which are attributed to a combination of passivation of nonradiative surface trap states and relaxation of exciton confinement. Taken together, our work demonstrates the unique aspects of surface ligand chemistry in controlling the excitonic absorption and emission properties of ultrasmall (CdSe)34 nanocrystals, which could expedite their potential applications in solid-state device fabrication.Item Investigating the Control by Quantum Confinement and Surface Ligand Coating of Photocatalytic Efficiency in Chalcopyrite Copper Indium Diselenide Nanocrystals(ACS, 2016-02) Jana, Atanu; Lawrence, Katie N.; Teunis, Meghan B.; Mandal, Manik; Kumbhar, Amar; Sardar, Rajesh; Department of Chemistry & Chemical Biology, School of ScienceIn the past few years, there has been immense interest in the preparation of sustainable photocatalysts composed of semiconductor nanocrystals (NCs) as one of their components. We report here, for the first time, the effects of structural parameters of copper indium diselenide (CuInSe2) NCs on visible light-driven photocatalytic degradation of pollutants under homogeneous conditions. Ligand exchange reactions were performed replacing insulating, oleylamine capping with poly(ethylene glycol) thiols to prepare PEG-thiolate-capped, 1.8–5.3 nm diameter CuInSe2 NCs to enhance their solubility in water. This unique solubility property caused inner-sphere electron transfer reactions (O2 to O2•−) to occur at the NC surface, allowing for sustainable photocatalytic reactions. Electrochemical characterization of our dissolved CuInSe2 NCs showed that the thermodynamic driving force (−ΔG) for oxygen reduction, which increased with decreased NC size, was the dominant contributor to the overall process when compared to the contribution light absorption and the Coulombic interaction energies of electron–hole pair (Je/h). A 2-fold increase in phenol degradation efficiency (from 30 to ∼60%) was achieved by controlled variation of the diameter of CuInSe2 NCs from 5.3 to 1.8 nm. The surface ligand dependency of photocatalytic efficiency was also investigated, and a profound effect on phenol degradation was observed. Our PEG-thiolate-capped CuInSe2 NCs showed photocatalytic activity toward other organic compounds, such as N,N-dimethyl-4-phenylenediamine, methylene blue, and thiourea, which showed decomposition under visible light.Item Investigation of Photophysical and Electrochemical Properties of Magic-Sized CdS Nanocrystals(Office of the Vice Chancellor for Research, 2013-04-05) Lawrence, Katie N.; Dolai, Sukanta; Irving, CharlesColloidal semiconductor nanocrystals (NCs) have been the interest of many studies over the past two decades due to their applications in device fabrication, electrocatalysts, and medical diagnostics. Recent discovery of thermodynamically stable ultra-small nanocrystals (“magic-sized”) has provided the opportunity to understand their different properties at the molecular level. Herein we present the synthesis and purification of poly(ethylene glycol) thiolate-capped magic-sized CdS nanocrystals with distinct photophysical properties. These CdS NCs overcame solubility restraints by directly transferring from aqueous to organic mediums and also showed significant increased in peak sharpness when analyzed by high-resolution MALDI-TOF-MS, which confirmed formation of (CdS)33,34 nanocrystals. The electrochemical properties of dissolved CdS nanocrystals were investigated in organic solvent/electrolyte medium by different voltammetric techniques. The nanocrystals displayed molecule-like HOMO-LUMO energy gap. The electrochemical features are strongly temperature, solvent, and capping-ligand thickness dependent. We also developed a working model of the energy level structure of the PEG-thiolate-capped (CdS)33,34 nanocrystals.Item Pure white‐light emitting ultrasmall organic‐inorganic hybrid perovskite nanoclusters(RSC, 2016-10) Teunis, Meghan B.; Lawrence, Katie N.; Dutta, Poulami; Siegel, Amanda P.; Sardar, Rajesh; Department of Chemistry & Chemical Biology, School of ScienceOrganic–inorganic hybrid perovskites, direct band-gap semiconductors, have shown tremendous promise for optoelectronic device fabrication. We report the first colloidal synthetic approach to prepare ultrasmall (∼1.5 nm diameter), white-light emitting, organic–inorganic hybrid perovskite nanoclusters. The nearly pure white-light emitting ultrasmall nanoclusters were obtained by selectively manipulating the surface chemistry (passivating ligands and surface trap-states) and controlled substitution of halide ions. The nanoclusters displayed a combination of band-edge and broadband photoluminescence properties, covering a major part of the visible region of the solar spectrum with unprecedentedly large quantum yields of ∼12% and photoluminescence lifetime of ∼20 ns. The intrinsic white-light emission of perovskite nanoclusters makes them ideal and low cost hybrid nanomaterials for solid-state lighting applications.Item Size-Dependent Optical and Electrochemical Energy Gaps Comparison of CdSe Nanolusters(Office of the Vice Chancellor for Research, 2013-04-05) Teunis, Meghan B.; Lawrence, Katie N.; Dolai, SukantaThe size-dependent optical and electronic properties of semiconductor nanocrystals have made them the focus of much research including the designing of photovoltaic devices and photocatalysts. These properties occur as a result of the phenomenon called quantum confinement. To improve the device efficiency it is important to have a better understanding of their size dependent electrochemical properties. Herein we demonstrate for the first time, a comparison of the size dependent optical properties and electrochemical energy gaps of poly(ethylene glycol) thiolate-protected ultra-small CdSe nanoclusters. The electrochemical energy gaps for various sized nanoclusters were determined from cyclic and differential pulse voltammetry in organic solvent/electrolyte medium, where large, moleculelike HOMO-LUMO energy gaps were observed. It was also found that a significant amount of charging energy is involved in the electrochemical energy gap. The effect of the thickness of the surface-pasivating ligands on the HOMO-LUMO energy gap is demonstrated and a quantized double layer (QDL) charging model presented.Item Solvent-like ligand-coated ultrasmall cadmium selenide nanocrystals: Strong electronic coupling in a self-organized assembly(RSC, 2015-07) Lawrence, Katie N.; Johnson, Merrell A.; Dolai, Sukanta; Kumbhar, Amar; Sardar, Rajesh; Department of Chemistry & Chemical Biology, School of ScienceStrong inter-nanocrystal electronic coupling is a prerequisite for delocalization of exciton wave functions and high conductivity. We report 170 meV electronic coupling energy of short chain poly(ethylene glycol) thiolate-coated ultrasmall (<2.5 nm in diameter) CdSe semiconductor nanocrystals (SNCs) in solution. Cryo-transmission electron microscopy analysis showed the formation of a pearl-necklace assembly of nanocrystals in solution with regular inter-nanocrystal spacing. The electronic coupling was studied as a function of CdSe nanocrystal size where the smallest nanocrystals exhibited the largest coupling energy. The electronic coupling in spin-cast thin-film (<200 nm in thickness) of poly(ethylene glycol) thiolate-coated CdSe SNCs was studied as a function of annealing temperature, where an unprecedentedly large, ∼400 meV coupling energy was observed for 1.6 nm diameter SNCs, which were coated with a thin layer of poly(ethylene glycol) thiolates. Small-angle X-ray scattering measurements showed that CdSe SNCs maintained an order array inside the films. The strong electronic coupling of SNCs in a self-organized film could facilitate the large-scale production of highly efficient electronic materials for advanced optoelectronic device application.Item Synthesis of PEG-Thiolate Monolayer Protected CdSe Nanoclusters with Unique Solubility Properties(Office of the Vice Chancellor for Research, 2012-04-13) Lawrence, Katie N.; Dolai, Sukanta; Sardar, RajeshLigands protected metal chalcogenides have shown potential applications in bionanotechnology and device fabrication due to their unique optical properties. However, most metal chalcogenides suffer from solubility problems, which hinders their applications. To overcome the solubility issue of metal chalcogenide nanoclusters, we have demonstrated the aqueous phase synthesis of polyethylene glycol thiolate (PEG-S-) protected CdSe nanoclusters for the first time. The CdSe nanoclusters displayed a first absorption peak ~430 nm, which indicated formation of magic-sized nanoclusters with possible composition of (CdSe)33,34. The PEG-thiolate protected CdSe nanoclusters demonstrated unique solubility properties. The resulting nanoclusters can easily be transferred to organic solvents from an aqueous medium by a simple solvent extraction method. The organic-phase extracted CdSe nanoclusters can readily be redispersed in a wide array of organic solvents such as CH3CN, CH2Cl2, DMF, THF, and CH3Cl. Most importantly, the CdSe nanoclusters, soluble in organic solvents, can also be redispersed in aqueous medium as well. We investigated different chain length PEGn-thiols, e.g., PEG4-SH, PEG6-SH, PEG12-SH, and PEG18-SH and found that the PEG-chain length significantly influenced the aqueous to organic phase transfer properties. Successful transfers were accomplished for PEGn-SH (n = 6, 12, 18). Future studies will be performed on the synthesis of PEG-SH stabilized various metal chalcogenide nanoclusters (CdS, CdTe, ZnS, ZnSe, and CdSe/ZnS nanoclusters).