Size-Dependent Optical and Electrochemical Energy Gaps Comparison of CdSe Nanolusters
Date
Language
Embargo Lift Date
Department
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
The size-dependent optical and electronic properties of semiconductor nanocrystals have made them the focus of much research including the designing of photovoltaic devices and photocatalysts. These properties occur as a result of the phenomenon called quantum confinement. To improve the device efficiency it is important to have a better understanding of their size dependent electrochemical properties. Herein we demonstrate for the first time, a comparison of the size dependent optical properties and electrochemical energy gaps of poly(ethylene glycol) thiolate-protected ultra-small CdSe nanoclusters. The electrochemical energy gaps for various sized nanoclusters were determined from cyclic and differential pulse voltammetry in organic solvent/electrolyte medium, where large, moleculelike HOMO-LUMO energy gaps were observed. It was also found that a significant amount of charging energy is involved in the electrochemical energy gap. The effect of the thickness of the surface-pasivating ligands on the HOMO-LUMO energy gap is demonstrated and a quantized double layer (QDL) charging model presented.