Dual Role of Electron-Accepting Metal-Carboxylate Ligands: Reversible Expansion of Exciton Delocalization and Passivation of Nonradiative Trap-States in Molecule-like CdSe Nanocrystals

Date
2016-10
Language
English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
ACS
Abstract

This paper reports large bathochromic shifts of up to 260 meV in both the excitonic absorption and emission peaks of oleylamine (OLA)-passivated molecule-like (CdSe)34 nanocrystals caused by postsynthetic treatment with the electron accepting Cd(O2CPh)2 complex at room temperature. These shifts are found to be reversible upon removal of Cd(O2CPh)2 by N,N,N′,N′-tetramethylethylene-1,2-diamine. 1H NMR and FTIR characterizations of the nanocrystals demonstrate that the OLA remained attached to the surface of the nanocrystals during the reversible removal of Cd(O2CPh)2. On the basis of surface ligand characterization, X-ray powder diffraction measurements, and additional control experiments, we propose that these peak red shifts are a consequence of the delocalization of confined exciton wave functions into the interfacial electronic states that are formed from interaction of the LUMO of the nanocrystals and the LUMO of Cd(O2CPh)2, as opposed to originating from a change in size or reorganization of the inorganic core. Furthermore, attachment of Cd(O2CPh)2 to the OLA-passivated (CdSe)34 nanocrystal surface increases the photoluminescence quantum yield from 5% to an unprecedentedly high 70% and causes a 3-fold increase of the photoluminescence lifetime, which are attributed to a combination of passivation of nonradiative surface trap states and relaxation of exciton confinement. Taken together, our work demonstrates the unique aspects of surface ligand chemistry in controlling the excitonic absorption and emission properties of ultrasmall (CdSe)34 nanocrystals, which could expedite their potential applications in solid-state device fabrication.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Lawrence, K. N., Dutta, P., Nagaraju, M., Teunis, M. B., Muhoberac, B. B., & Sardar, R. (2016). Dual Role of Electron-Accepting Metal-Carboxylate Ligands: Reversible Expansion of Exciton Delocalization and Passivation of Nonradiative Trap-States in Molecule-like CdSe Nanocrystals. Journal of the American Chemical Society, 138(39), 12813-12825.
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Journal of the American Chemical Society
Rights
Publisher Policy
Source
Publisher
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}