- Browse by Author
Browsing by Author "Kim, Jungsu"
Now showing 1 - 10 of 28
Results Per Page
Sort Options
Item A simulative deep learning model of SNP interactions on chromosome 19 for predicting Alzheimer’s disease risk and rates of disease progression(Wiley, 2023) Bae, Jinhyeong; Logan, Paige E.; Acri, Dominic J.; Bharthur, Apoorva; Nho, Kwangsik; Saykin, Andrew J.; Risacher, Shannon L.; Nudelman, Kelly; Polsinelli, Angelina J.; Pentchev, Valentin; Kim, Jungsu; Hammers, Dustin B.; Apostolova, Liana G.; Alzheimer’s Disease Neuroimaging Initiative; Neurology, School of MedicineBackground: Identifying genetic patterns that contribute to Alzheimer's disease (AD) is important not only for pre-symptomatic risk assessment but also for building personalized therapeutic strategies. Methods: We implemented a novel simulative deep learning model to chromosome 19 genetic data from the Alzheimer's Disease Neuroimaging Initiative and the Imaging and Genetic Biomarkers of Alzheimer's Disease datasets. The model quantified the contribution of each single nucleotide polymorphism (SNP) and their epistatic impact on the likelihood of AD using the occlusion method. The top 35 AD-risk SNPs in chromosome 19 were identified, and their ability to predict the rate of AD progression was analyzed. Results: Rs561311966 (APOC1) and rs2229918 (ERCC1/CD3EAP) were recognized as the most powerful factors influencing AD risk. The top 35 chromosome 19 AD-risk SNPs were significant predictors of AD progression. Discussion: The model successfully estimated the contribution of AD-risk SNPs that account for AD progression at the individual level. This can help in building preventive precision medicine.Item Acoustofluidic Assembly of 3D Neurospheroids to Model Alzheimer’s Disease(Royal Society of Chemistry, 2020-09-28) Cai, Hongwei; Ao, Zheng; Hu, Liya; Moon, Younghye; Wu, Zhuhao; Lu, Hui-Chen; Kim, Jungsu; Guo, Feng; Medical and Molecular Genetics, School of MedicineNeuroinflammation plays a central role in the progression of many neurodegenerative diseases such as Alzheimer's disease, and challenges remain in modeling the complex pathological or physiological processes. Here, we report an acoustofluidic method that can rapidly construct 3D neurospheroids and inflammatory microenvironments for modeling microglia-mediated neuroinflammation in Alzheimer's disease. By incorporating a unique contactless and label-free acoustic assembly, this cell culture platform can assemble dissociated embryonic mouse brain cells into hundreds of uniform 3D neurospheroids with controlled cell numbers, composition (e.g. neurons, astrocytes, and microglia), and environmental components (e.g. amyloid-β aggregates) in hydrogel within minutes. Moreover, this platform can maintain and monitor the interaction among neurons, astrocytes, microglia, and amyloid-β aggregates in real-time for several days to weeks, after the integration of a high-throughput, time-lapse cell imaging approach. We demonstrated that our engineered 3D neurospheroids can represent the amyloid-β neurotoxicity, which is one of the main pathological features of Alzheimer's disease. Using this method, we also investigated the microglia migratory behaviors and activation in the engineered 3D inflammatory microenvironment at a high throughput manner, which is not easy to achieve in 2D neuronal cultures or animal models. Along with the simple fabrication and setup, the acoustofluidic technology is compatible with conventional Petri dishes and well-plates, supports the fine-tuning of the cellular and environmental components of 3D neurospheroids, and enables the high-throughput cellular interaction investigation. We believe our technology may be widely used to facilitate 3D in vitro brain models for modeling neurodegenerative diseases, discovering new drugs, and testing neurotoxicity.Item Comprehensive characterization of the transcriptional landscape in Alzheimer’s disease (AD) brains(American Association for the Advancement of Science, 2025) Chen, Chengxuan; Zhang, Zhao; Liu, Yuan; Hong, Wei; Karahan, Hande; Wang, Jun; Li, Wenbo; Diao, Lixia; Yu, Meichen; Saykin, Andrew J.; Nho, Kwangsik; Kim, Jungsu; Han, Leng; Biostatistics and Health Data Science, Richard M. Fairbanks School of Public HealthAlzheimer's disease (AD) is the leading dementia among the elderly with complex origins. Despite extensive investigation into the AD-associated protein-coding genes, the involvement of noncoding RNAs (ncRNAs) and posttranscriptional modification (PTM) in AD pathogenesis remains unclear. Here, we comprehensively characterized the landscape of ncRNAs and PTM events in 1460 samples across six brain regions sourced from the Mount Sinai/JJ Peters VA Medical Center Brain Bank Study and Mayo cohorts, encompassing 33,321 long ncRNAs, 92,897 enhancer RNAs, 53,763 alternative polyadenylation events, and 900,221 A-to-I RNA editing events. We additionally identified 25,351 aberrantly expressed ncRNAs and altered PTM events associated with AD traits and further identified the corresponding protein-coding genes to construct regulatory networks. Furthermore, we developed a user-friendly data portal, ADatlas, facilitating users in exploring our results. Our study aims to establish a comprehensive data platform for ncRNAs and PTMs in AD to advance related research.Item Contributions of the Presynaptic Protein Bassoon to Tau Pathogenesis and Neurodegeneration(2024-05) Patel, Henika Sanjaybhai; Oblak, Adrian; Lasagna-Reeves, Cristian; McKinzie, David; Kim, Jungsu; Webb, Ian; Murray, MelissaNeurodegenerative tauopathies, characterized by the aggregation of misfolded tau protein, pose a significant clinical and scientific challenge. A high-molecular-weight (HMW) tau species is known to be involved in spreading tau pathology. However, the nature and composition of this species remain elusive, hindering targeted interventions. There are four main chapters in this dissertation. The first chapter highlights the existing knowledge about tau and its role in neurodegenerative tauopathies and discusses the possible contribution of protein interactors in the pathogenesis of tau pathology. The second chapter investigates the association between pathological hallmarks and functional deficits in the aged PS19 tauopathy model. The findings indicate that a diverse spectrum of pathological tau species may underly different symptoms and that neuroinflammation might contribute to functional deficits independent of tau pathology. In the third chapter, we isolated and characterized the HMW tau species with seeding capabilities from the PS19 brains. Using unbiased quantitative mass spectrometry analysis, we identified Bassoon (BSN), a presynaptic protein, as a crucial interactor of the HMW tau seed. BSN overexpression exacerbated tau-seeding and toxicity both in vitro and in the Drosophila model of tauopathy. Conversely, the downregulation of BSN reduced tau spreading and overall disease pathology in the PS19 mice, indicating the important role of BSN in taumediated pathogenesis. In chapter four, we studied the disease-associated p.Pro3866Ala missense mutation in BSN and further evaluated the mechanisms through which BSN could induce toxicity and neurodegeneration. Using CRISPR-Cas9 technology, we developed a knock-in mouse model harboring the BSN P3866A missense mutation in the endogenous murine Bsn. We observed somatic BSN accumulation suggesting that the P3866A mutation might be enhancing the aggregation propensity of BSN and provide a conducive environment to promote tau aggregation. Furthermore, we observed dysregulation in protein degradation pathways, neuroinflammation, and enhanced synapse elimination by microglia. These findings underscore the pivotal role of BSN in providing a favorable environment for tau aggregation and influencing the properties of the tau seed, thereby contributing to neurodegenerative processes. Overall, our results indicate that targeting BSN could be a potential therapeutic intervention for neurodegenerative diseases.Item Deletion of Abi3 gene locus exacerbates neuropathological features of Alzheimer's disease in a mouse model of Aβ amyloidosis(American Association for the Advancement of Science, 2021-11) Karahan, Hande; Smith, Daniel C.; Kim, Byungwook; Dabin, Luke C.; Al-Amin, Md Mamun; Wijeratne, H.R. Sagara; Pennington, Taylor; di Prisco, Gonzalo Viana; McCord, Brianne; Lin, Peter Bor-Chian; Li, Yuxin; Peng, Junmin; Oblak, Adrian L.; Chu, Shaoyou; Atwood, Brady K.; Kim, Jungsu; Medical and Molecular Genetics, School of MedicineRecently, large-scale human genetics studies identified a rare coding variant in the ABI3 gene that is associated with an increased risk of Alzheimer’s disease (AD). However, pathways by which ABI3 contributes to the pathogenesis of AD are unknown. To address this question, we determined whether loss of ABI3 function affects pathological features of AD in the 5XFAD mouse model. We demonstrate that the deletion of Abi3 locus significantly increases amyloid β (Aβ) accumulation and decreases microglia clustering around the plaques. Furthermore, long-term potentiation is impaired in 5XFAD;Abi3 knockout (“Abi3−/−”) mice. Moreover, we identified marked changes in the proportion of microglia subpopulations in Abi3−/− mice using a single-cell RNA sequencing approach. Mechanistic studies demonstrate that Abi3 knockdown in microglia impairs migration and phagocytosis. Together, our study provides the first in vivo functional evidence that loss of ABI3 function may increase the risk of developing AD by affecting Aβ accumulation and neuroinflammation.Item Deletion of miR‐33, a regulator of the ABCA1–APOE pathway, ameliorates neuropathological phenotypes in APP/PS1 mice(Wiley, 2024) Tate, Mason; Wijeratne, H. R. Sagara; Kim, Byungwook; Philtjens, Stéphanie; You, Yanwen; Lee, Do-Hun; Gutierrez, Daniela A.; Sharify, Daniel; Wells, Megan; Perez-Cardelo, Magdalena; Doud, Emma H.; Fernandez-Hernando, Carlos; Lasagna-Reeves, Cristian; Mosley, Amber L.; Kim, Jungsu; Biochemistry and Molecular Biology, School of MedicineIntroduction: Rare variants in ABCA1 increase the risk of developing Alzheimer's disease (AD). ABCA1 facilitates the lipidation of apolipoprotein E (apoE). This study investigated whether microRNA-33 (miR-33)-mediated regulation of this ABCA1-APOE pathway affects phenotypes of an amyloid mouse model. Methods: We generated mir-33+/+;APP/PS1 and mir-33-/-;APP/PS1 mice to determine changes in amyloid pathology using biochemical and histological analyses. We used RNA sequencing and mass spectrometry to identify the transcriptomic and proteomic changes between our genotypes. We also performed mechanistic experiments by determining the role of miR-33 in microglial migration and amyloid beta (Aβ) phagocytosis. Results: Mir-33 deletion increases ABCA1 levels and reduces Aβ accumulation and glial activation. Multi-omics studies suggested miR-33 regulates the activation and migration of microglia. We confirm that the inhibition of miR-33 significantly increases microglial migration and Aβ phagocytosis. Discussion: These results suggest that miR-33 might be a potential drug target by modulating ABCA1 level, apoE lipidation, Aβ level, and microglial function. Highlights: Loss of microRNA-33 (miR-33) increased ABCA1 protein levels and the lipidation of apolipoprotein E. Loss of miR-33 reduced amyloid beta (Aβ) levels, plaque deposition, and gliosis. mRNAs and proteins dysregulated by miR-33 loss relate to microglia and Alzheimer's disease. Inhibition of miR-33 increased microglial migration and Aβ phagocytosis in vitro.Item Deletion of the Alzheimer's disease risk gene Abi3 locus results in obesity and systemic metabolic disruption in mice(Frontiers Media, 2022-12-22) Smith, Daniel C.; Karahan, Hande; Sagara Wijeratne, H. R.; Al-Amin, Mamun; McCord, Brianne; Moon, Younghye; Kim, Jungsu; Medical and Molecular Genetics, School of MedicineAlzheimer’s disease (AD) genetics studies have identified a coding variant within ABI3 gene that increases the risk of developing AD. Recently, we demonstrated that deletion of the Abi3 gene locus dramatically exacerbates AD neuropathology in a transgenic mouse model of amyloidosis. In the course of this AD project, we unexpectedly found that deletion of the Abi3 gene locus resulted in a dramatic obese phenotype in non-transgenic mice. Here, we report our investigation into this serendipitous metabolic finding. Specifically, we demonstrate that mice with deletion of the Abi3 gene locus (Abi3–/–) have dramatically increased body weight and body fat. Further, we determined that Abi3–/– mice have impaired energy expenditure. Additionally, we found that deletion of the Abi3 gene locus altered gene expression within the hypothalamus, particularly within immune-related pathways. Subsequent immunohistological analysis of the central nervous system (CNS) revealed that microglia number and area were decreased specifically within the mediobasal hypothalamus of Abi3–/– mice. Altogether, this investigation establishes the functional importance of the Abi3 gene locus in the regulation of systemic metabolism and maintenance of healthy body weight. While our previous findings indicated the importance of Abi3 in neurodegeneration, this study indicates that Abi3 related functions are also essential for metabolic regulation.Item Effects of SPI1-mediated transcriptome remodeling on Alzheimer's disease-related phenotypes in mouse models of Aβ amyloidosis(Springer Nature, 2024-05-11) Kim, Byungwook; Dabin, Luke Child; Tate, Mason Douglas; Karahan, Hande; Sharify, Ahmad Daniel; Acri, Dominic J.; Al-Amin, Md Mamun; Philtjens, Stéphanie; Smith, Daniel Curtis; Wijeratne, H. R. Sagara; Park, Jung Hyun; Jucker, Mathias; Kim, Jungsu; Medical and Molecular Genetics, School of MedicineSPI1 was recently reported as a genetic risk factor for Alzheimer's disease (AD) in large-scale genome-wide association studies. However, it is unknown whether SPI1 should be downregulated or increased to have therapeutic benefits. To investigate the effect of modulating SPI1 levels on AD pathogenesis, we performed extensive biochemical, histological, and transcriptomic analyses using both Spi1-knockdown and Spi1-overexpression mouse models. Here, we show that the knockdown of Spi1 expression significantly exacerbates insoluble amyloid-β (Aβ) levels, amyloid plaque deposition, and gliosis. Conversely, overexpression of Spi1 significantly ameliorates these phenotypes and dystrophic neurites. Further mechanistic studies using targeted and single-cell transcriptomics approaches demonstrate that altered Spi1 expression modulates several pathways, such as immune response pathways and complement system. Our data suggest that transcriptional reprogramming by targeting transcription factors, like Spi1, might hold promise as a therapeutic strategy. This approach could potentially expand the current landscape of druggable targets for AD.Item Enhanced microglial dynamics and a paucity of tau seeding in the amyloid plaque microenvironment contribute to cognitive resilience in Alzheimer's disease(Springer, 2024-08-05) Jury‑Garfe, Nur; Redding‑Ochoa, Javier; You, Yanwen; Martínez, Pablo; Karahan, Hande; Chimal‑Juárez, Enrique; Johnson, Travis S.; Zhang, Jie; Resnick, Susan; Kim, Jungsu; Troncoso, Juan C.; Lasagna‑Reeves, Cristian A.; Medical and Molecular Genetics, School of MedicineAsymptomatic Alzheimer's disease (AsymAD) describes the status of individuals with preserved cognition but identifiable Alzheimer's disease (AD) brain pathology (i.e., beta-amyloid (Aβ) deposits, neuritic plaques, and neurofibrillary tangles) at autopsy. In this study, we investigated the postmortem brains of a cohort of AsymAD subjects to gain insight into the mechanisms underlying resilience to AD pathology and cognitive decline. Our results showed that AsymAD cases exhibit enrichment in core plaques, decreased filamentous plaque accumulation, and increased plaque-surrounding microglia. Less pathological tau aggregation in dystrophic neurites was found in AsymAD brains than in AD brains, and tau seeding activity was comparable to that in healthy brains. We used spatial transcriptomics to characterize the plaque niche further and revealed autophagy, endocytosis, and phagocytosis as the pathways associated with the genes upregulated in the AsymAD plaque niche. Furthermore, the levels of ARP2 and CAP1, which are actin-based motility proteins that participate in the dynamics of actin filaments to allow cell motility, were increased in the microglia surrounding amyloid plaques in AsymAD cases. Our findings suggest that the amyloid-plaque microenvironment in AsymAD cases is characterized by the presence of microglia with highly efficient actin-based cell motility mechanisms and decreased tau seeding compared with that in AD brains. These two mechanisms can potentially protect against the toxic cascade initiated by Aβ, preserving brain health, and slowing AD pathology progression.Item Enhanced microglial dynamics and paucity of tau seeding in the amyloid plaque microenvironment contributes to cognitive resilience in Alzheimer’s disease(bioRxiv, 2023-07-28) Jury-Garfe, Nur; You, Yanwen; Martínez, Pablo; Redding-Ochoa, Javier; Karahan, Hande; Johnson, Travis S.; Zhan, Jie; Kim, Jungsu; Troncoso, Juan C.; Lasagna-Reeves, Cristian A.; Anatomy, Cell Biology and Physiology, School of MedicineAsymptomatic Alzheimer’s disease (AsymAD) describes the status of subjects with preserved cognition but with identifiable Alzheimer’s disease (AD) brain pathology (i.e. Aβ-amyloid deposits, neuritic plaques, and neurofibrillary tangles) at autopsy. In this study, we investigated the postmortem brains of a cohort of AsymAD cases to gain insight into the underlying mechanisms of resilience to AD pathology and cognitive decline. Our results showed that AsymAD cases exhibit an enrichment of core plaques and decreased filamentous plaque accumulation, as well as an increase in microglia surrounding this last type. In AsymAD cases we found less pathological tau aggregation in dystrophic neurites compared to AD and tau seeding activity comparable to healthy control subjects. We used spatial transcriptomics to further characterize the plaque niche and found autophagy, endocytosis, and phagocytosis within the top upregulated pathways in the AsymAD plaque niche, but not in AD. Furthermore, we found ARP2, an actin-based motility protein crucial to initiate the formation of new actin filaments, increased within microglia in the proximity of amyloid plaques in AsymAD. Our findings support that the amyloid-plaque microenvironment in AsymAD cases is characterized by microglia with highly efficient actin-based cell motility mechanisms and decreased tau seeding compared to AD. These two mechanisms can potentially provide protection against the toxic cascade initiated by Aβ that preserves brain health and slows down the progression of AD pathology.
- «
- 1 (current)
- 2
- 3
- »